Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2018 | Story Igno van Niekerk | Photo Igno van Niekerk
Insects on the menu
Beetle juice and bug flour; Drs Ismari van der Merwe and Cariena Bothma are researching the possibility of a high-protein diet consisting of insect ingredients.

You’ve just had a tasty milkshake made from grasshopper juice, now for a light snack. Your choice: Salty cricket cookies or a deep-fried ant delight?

One of these days the above delicatessen may just find its way to your local restaurant menu if Drs Ismari van der Merwe, Cariena Bothma, both lecturers in the Department of Consumer Science, and their enthusiastic team of students have their way. Insects as food are rich in protein, often tasty, and having them on a menu is not as far-fetched as you may think. After all, we know what culinary delights mopani worms – and yes – cooked land snails (enjoyed as escargots) have become over the years.

 

Cricket smackerals

 

When Dr Van der Mewe explains the benefits of her team’s vision for a high-protein diet consisting of insect ingredients (cricket flour as an example), one becomes aware that this could be the solution to a myriad of problems. Insects eat much less than our regular menu items such as cows (beef), sheep (lamb chops) or pigs (pork). Insects as an alternative diet will reduce the negative impact that larger animals have on the environment and greenhouse gases. Insects have faster life cycles and it takes less effort and space to breed and feed them.

“Ugh! Ick! Disgusting,” you might think. But picture the taste lab where volunteers are given regular chocolate cookies made with regular flour, and then asked to compare it with cookies made from cricket flour. Dr van der Merwe assures me that most people will be unable to distinguish between them, often even preferring the cricket smackerals.

 

Heathy alternative

 

Insect breakfast cereals, granola, and snack food is a real and viable solution for the developing world where food is scarce, and hunger is a real issue. But is it healthy? Dr Van der Merwe assures me that during the process of ‘bug to flour’, they are addressing the main concern: micro-organisms that might be detrimental to health. Once the insects or processed insect by-products arrive on your plate, it’s a healthy high-protein alternative that might become the next revolutionary diet.

So, stand aside Atkins, beware Banting, and be gone Gluten-free – there is a new diet on its way to the menu. Brace yourself for beetle juice and bug flour: a diet full of proteins, fat, energy, and essential amino acids. 

 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept