Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2018 | Story Igno van Niekerk | Photo Igno van Niekerk
Insects on the menu
Beetle juice and bug flour; Drs Ismari van der Merwe and Cariena Bothma are researching the possibility of a high-protein diet consisting of insect ingredients.

You’ve just had a tasty milkshake made from grasshopper juice, now for a light snack. Your choice: Salty cricket cookies or a deep-fried ant delight?

One of these days the above delicatessen may just find its way to your local restaurant menu if Drs Ismari van der Merwe, Cariena Bothma, both lecturers in the Department of Consumer Science, and their enthusiastic team of students have their way. Insects as food are rich in protein, often tasty, and having them on a menu is not as far-fetched as you may think. After all, we know what culinary delights mopani worms – and yes – cooked land snails (enjoyed as escargots) have become over the years.

 

Cricket smackerals

 

When Dr Van der Mewe explains the benefits of her team’s vision for a high-protein diet consisting of insect ingredients (cricket flour as an example), one becomes aware that this could be the solution to a myriad of problems. Insects eat much less than our regular menu items such as cows (beef), sheep (lamb chops) or pigs (pork). Insects as an alternative diet will reduce the negative impact that larger animals have on the environment and greenhouse gases. Insects have faster life cycles and it takes less effort and space to breed and feed them.

“Ugh! Ick! Disgusting,” you might think. But picture the taste lab where volunteers are given regular chocolate cookies made with regular flour, and then asked to compare it with cookies made from cricket flour. Dr van der Merwe assures me that most people will be unable to distinguish between them, often even preferring the cricket smackerals.

 

Heathy alternative

 

Insect breakfast cereals, granola, and snack food is a real and viable solution for the developing world where food is scarce, and hunger is a real issue. But is it healthy? Dr Van der Merwe assures me that during the process of ‘bug to flour’, they are addressing the main concern: micro-organisms that might be detrimental to health. Once the insects or processed insect by-products arrive on your plate, it’s a healthy high-protein alternative that might become the next revolutionary diet.

So, stand aside Atkins, beware Banting, and be gone Gluten-free – there is a new diet on its way to the menu. Brace yourself for beetle juice and bug flour: a diet full of proteins, fat, energy, and essential amino acids. 

 

News Archive

UFS Physics Research Chair receives more funding
2017-11-20


 Description: Prof Hendrik Swart, Physics Research Chair receives more funding Tags: Prof Hendrik Swart, Physics Research Chair receives more funding

Prof Hendrik Swart, Senior Researcher Professor in the
Department of Physics at UFS.
Photo: Charl Devenish

A research project into low-energy lighting using phosphor materials for light emitting diodes (LEDs) at the Department of Physics at the University of the Free State (UFS) has received further recognition. 

The South African Research Chairs Initiative (SARChi) has awarded further funding for the Research Chair in Solid State Luminescent and Advanced Materials situated in the department. Prof Hendrik Swart, a Senior Research Professor in the Department of Physics, says this means that the Chair will carry on receiving funds from SARChi for another five years. The Initiative also awarded Prof Swart in 2012 for the research, which resulted in funding for equipment and among others, bursaries.    

Better light emission in LED’s
The research focuses on better light emission of phosphor powers in LEDs. It is also looking into improving LED displays in flat screens. The research into solar cells has shown that phosphors can also increase their efficiency by increasing the range of light frequencies, which convert into electricity. It also entails that glow-in-the-dark coatings absorb light during the day and emit it at night. 

Prof Swart says over the next five years the research will focus on developing and producing devices that emit better light using the substances already developed. “We need to make small devices to see if they are better than those we already have.” In practical terms, it means they want a farmer’s water pump that works with solar energy to work better with less energy input.” 

Device that simulates sunlight
Prof Swart says the renewal of the Chair’s funding means the department can now get equipment to enhance its research   such as a solar simulator. The solar simulator uses white LEDs whose intensity output and wavelengths can be tuned. The output is measured in number of suns. It enables researchers to work in a laboratory with a device that simulates sunlight.     

According to Prof Swart the long-term benefit of the research will result in more environmentally friendly devices which use less energy, are brighter and give a wider viewing field. 

About 10 postdoctoral researchers are working on the studies done by the Chair in collaboration with the Council for Scientific and Industrial Research. 

The Research Chair Initiative aims to improve the research capacity at public universities to produce high-quality postgraduate students, research and innovative outputs. The criterion for evaluating the department’s Chair includes aspects such as how much development has occurred over the past five years. The assessors look at features such as the number of students the research entity has trained and how many publications the research team has produced.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept