Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2018 | Story Igno van Niekerk | Photo Igno van Niekerk
Insects on the menu
Beetle juice and bug flour; Drs Ismari van der Merwe and Cariena Bothma are researching the possibility of a high-protein diet consisting of insect ingredients.

You’ve just had a tasty milkshake made from grasshopper juice, now for a light snack. Your choice: Salty cricket cookies or a deep-fried ant delight?

One of these days the above delicatessen may just find its way to your local restaurant menu if Drs Ismari van der Merwe, Cariena Bothma, both lecturers in the Department of Consumer Science, and their enthusiastic team of students have their way. Insects as food are rich in protein, often tasty, and having them on a menu is not as far-fetched as you may think. After all, we know what culinary delights mopani worms – and yes – cooked land snails (enjoyed as escargots) have become over the years.

 

Cricket smackerals

 

When Dr Van der Mewe explains the benefits of her team’s vision for a high-protein diet consisting of insect ingredients (cricket flour as an example), one becomes aware that this could be the solution to a myriad of problems. Insects eat much less than our regular menu items such as cows (beef), sheep (lamb chops) or pigs (pork). Insects as an alternative diet will reduce the negative impact that larger animals have on the environment and greenhouse gases. Insects have faster life cycles and it takes less effort and space to breed and feed them.

“Ugh! Ick! Disgusting,” you might think. But picture the taste lab where volunteers are given regular chocolate cookies made with regular flour, and then asked to compare it with cookies made from cricket flour. Dr van der Merwe assures me that most people will be unable to distinguish between them, often even preferring the cricket smackerals.

 

Heathy alternative

 

Insect breakfast cereals, granola, and snack food is a real and viable solution for the developing world where food is scarce, and hunger is a real issue. But is it healthy? Dr Van der Merwe assures me that during the process of ‘bug to flour’, they are addressing the main concern: micro-organisms that might be detrimental to health. Once the insects or processed insect by-products arrive on your plate, it’s a healthy high-protein alternative that might become the next revolutionary diet.

So, stand aside Atkins, beware Banting, and be gone Gluten-free – there is a new diet on its way to the menu. Brace yourself for beetle juice and bug flour: a diet full of proteins, fat, energy, and essential amino acids. 

 

News Archive

Plant eco-physiologist finds effective solutions for crop optimisation
2016-07-24

Description: Orange trees Tags: Orange trees

The bio-stimulant was tested on
this citrus. This is the first time
that the product has been tested
on a crop.

In a time characterised by society facing increasing population growth, food crises, and extreme climatic conditions such as drought, it is essential for farmers to integrate science with their work practices in order to optimise crops.

Role of photosynthesis and plant sap data

By knowing how to use photosynthesis and plant sap data for determining plant health, fast and effective solutions could be established for the optimisation of crops. This technique, which could help farmers utilise every bit of usable land effectively, is the focus of Marguerite Westcott’s PhD study. She is a junior lecturer and plant eco-physiologist in die Department of Plant Sciences at the University of the Free State.

Westcott uses this technique in her studies to prove that a newly-developed bio-stimulant stimulates plants in order to metabolise water and other nutrients better, yielding increased crops as a result.

Agricultural and mining sectors benefit from research

The greatest part of these projects focuses on the agricultural sector. Westcott and a colleague, Dr Gert Marais, are researching the physiology of pecan and citrus trees in order to optimise the growth of these crops, thus minimising disease through biological methods. Field trials are being conducted in actively-producing orchards in the Hartswater and Patensie areas in conjunction with the South African Pecan Nut Producers Association (SAPPA) amongst others.
 
The principles that Westcott applies in her research are also used in combination with the bio-stimulant in other studies on disturbed soil, such as mine-dump material, for establishing plants in areas where they would not grow normally. This is an economical way for both the agricultural and mining sectors to improve nutrient absorption, stimulate growth, and contribute to the sustainable utilisation of the soil.

Description: Pecan nut orchards  Tags: Pecan nut orchards

The bio-stimulant contributes to the immunity of the plants.
It was tested in these pecan nut orchards (Hartswater).

Soil rehabilitation key aspect in research projects

“One of two things is happening in my research projects. Either the soil is rehabilitated to bring about the optimal growth of a plant, or the plants are used to rehabilitate the soil,” says Westcott.

Data surveys for her PhD studies began in 2015. “This will be a long-term project in which seasonal data will be collected continuously. The first set of complete field data, together with pot trial data, will be completed after the current crop harvest,” says Westcott.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept