Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 February 2018 Photo Adri Louw
KovsieFM programme manager joins SuperSport as field reporter
Sam Ludidi.

Sam Ludidi is no unfamiliar face on campus. He is currently busy with his second year of a BA Communication Science degree but started off as a BSocSc student five years ago. This KovsieFM programme manager recently joined the SuperSport team as a field reporter. He was selected from 70 candidates and recalls the phone call he received as the best he ever got. We checked in with him to see how he was enjoying the limelight.

It is difficult to choose between television and radio ... I think I prefer television. Then again, there’s a certain skill you need for radio because people don’t see you – that challenge intrigues me. But since I’m an expressive person, television allows me to express myself in full view of the audience.

Sport is my true passion, without a shadow of a doubt. I was born and raised in a sports-crazy house and always loved it – even watching the Proteas’ unfortunate loss to Australia in the Cricket World Cup when I was four. I’ve always loved cricket, but I just cannot keep myself away from rugby. Between the two sports, I’d probably lean towards rugby from an off-the-field perspective, and cricket if I’m on the field.

“You only have one chance
to make it work.”
—Sam Ludidi
Supersport Field Reporter

The best and worst thing about being a television presenter is that it is live. You only have one chance to make it work. When I get it right, I feel great, but on a difficult day, I am hard on myself. I’m still somewhat new to television, but the trick is to find out what makes me different from the rest. My character and charisma make me stand out.

I still can’t believe ... that I am doing my dream job, and it almost came out of nowhere. My incredible support structure from since before my TV presenter job still sticks with me. I learnt from my mother to glorify God with the work that I do, I know that He’s opened many doors which led to this and I cannot express just how blessed I am.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept