Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 February 2018 Photo Pixabay
Use less water and save more
Don't think twice about being water-wise

“Lift up the handle as soon as you flush. Don’t use the whole five litres at a go,” says Dr Cindé Greyling, who reckons we could save 25% of the water we flush down the toilet. Dr Greyling, who completed her PhD in Disaster Management at the University of the Free State (UFS), has spent years studying ways to shape the drought dialogue. Her voice is one that deserves our attention as citizens of this province.

Over the past five years the Free State has been experiencing heightened stress levels on reservoirs and dams due to the drought conditions induced by climate change. Since 2013 the issue has been worsening instead of improving.

Feasible water-conservation strategies
Students and staff members are advised to apply the same principle in the bathroom and kitchen alike by not letting the tap run while rinsing coffee cups. You could save a litre or two a day by (depending on how much coffee you drink and the number of cups rinsed) by quitting this bad habit. According to Dr Greyling, litter on campus is a secondary way of wasting water which many are unaware of. Litter blocks the drains and water which could have otherwise been recycled is lost in the process.

What do fellow Kovsies say?
Unamandla Mdlotshana, a third-year Actuarial Science student proposed eco-friendly adjustments that could potentially save litres of water on our campuses. He believes that using bottles to collect drinking water from taps, installing more water dispensers, and introducing hand sanitisers in bathrooms could drastically minimise water usage.

According to Dr Greyling, litter on campus is a
secondary way of wasting water which many
are unaware of. Litter blocks the drains and water,
which could have otherwise been recycled,
is lost in the process.


In Tebogo Chabangu’s view, taking shorter showers, turning off the tap while brushing your teeth, and making sure taps are properly closed are some of the ways we could be water-wise. For the Anthropology honours student being water conscious means changing habits on a daily basis.

Join us as we spread the message of reversing the effects of the drought by saving water prior to the Rector’s engagement with students at 11:30 on 08 March 2018 at the Albert Wessels Auditorium on the Bloemfontein campus.

Remember to tag us on your water-saving tips on Facebook, Twitter and Instagram.

 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept