Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 January 2018 Photo Charl Devenish
Researcher tackling drug-resistant TB through molecular methods
Dr Anneke van der Spoel van Dijk is invested in contributing to the global effort of stopping TB by 2035.

The work of Dr Anneke van der Spoel van Dijk investigates the spread of TB in the Free State population using techniques such as next generation sequencing, spoligotyping and MIRU-VNTR typing. Dr Van der Spoel van Dijk, a senior medical scientist in the Department of Medical Microbiology at the University of the Free State (UFS) also looks at drug resistance in her research. This work informs decisions about how best to treat patients with multidrug-resistant TB (MDR-TB). 

She employs rapid molecular techniques to track one of Africa’s most serious diseases, tuberculosis (TB). 

Drug resistance
Scientists assist the National Health Laboratory Service and Department of Health in trying to refine the diagnostic tools to identify these cases earlier. Dr Van der Spoel van Dijk explains: “Until recently, it took up to two years to fine-tune treatment decisions for patients with MDR-TB. Patients get a cocktail of anti-TB drugs, but it takes time to find the right combination. Re-infection and relapse (patients stopping treatment for several reasons) add to the diagnostic and treatment management challenges.

Enormous impact
“Now doctors can reduce the time needed for diagnostic certainty to about seven days, while new drugs allow reduction of treatment from more than 18 to nine months. This can have an enormous impact on the life of many patients.”

Dr Van der Spoel van Dijk’s work forms part of research in the faculty looking at resistance development in TB strains. She is currently also doing her doctoral thesis on the differences and incidence of MDR-TB among adolescents versus adults. Dr Van der Spoel van Dijk says: “It is a complicated picture, but we hope to unravel it to support better diagnostic tools and patient care.”

As part of the National Health Laboratory Service, her department is playing an important role in TB diagnostics and the training of scientists and future pathologists. “Our work is contributing to the global vision to stop TB by 2035,” Dr Van der Spoel van Dijk says.

News Archive

Africa's Black Rhino conservation strategy must change
2017-07-10

 Description: Black Rhino Tags: conservation strategy, black rhino, Nature Scientific Reports, National Zoological Gardens of South Africa, extinction, decline in genetic diversity, Prof Antoinette Kotze, Research and Scientific Services, Dr Desire Dalton 

The black rhino is on the brink of extinction. The study that was 
published in the Nature Scientific Reports reveals that the
species has lost an astonishing 69% of its genetic variation. 
Photo: iStock

The conservation strategy of the black rhino in Africa needs to change in order to protect the species from extinction, a group of international researchers has found. The study that was published in the Nature Scientific Reports reveals that the species has lost an astonishing 69% of its genetic variation. 

South African researchers took part 

The researchers, which included local researchers from the National Zoological Gardens of South Africa (NZG), have highlighted the fact that this means the black rhino is on the brink of extinction. "We have found that there is a decline in genetic diversity, with 44 of 64 genetic lineages no longer existing," said Prof Antoinette Kotze, the Manager of Research and Scientific Services at the Zoo in Pretoria. She is also affiliate Professor in the Department of Genetics at the University of the Free State and has been involved in rhino research in South Africa since the early 2000s.  

DNA from museums and the wild 
The study compared DNA from specimens in museums around the world, which originated in the different regions of Africa, to the DNA of live wild animals. The DNA was extracted from the skin of museum specimen and from tissue and faecal samples from animals in the wild. The research used the mitochondrial genome.

"The rhino poaching ‘pandemic’
needs to be defeated, because
it puts further strain on the genetic
diversity of the black rhino.”


Ability to adapt 
Dr Desire Dalton, one of the collaborators in the paper and a senior researcher at the NZG, said the loss of genetic diversity may compromise the rhinos’ ability to adapt to climate change. The study further underlined that two distinct populations now exists on either side of the Zambezi River. Dr Dalton said these definite populations need to be managed separately in order to conserve their genetic diversity. The study found that although the data suggests that the future is bleak for the black rhinoceros, the researchers did identify populations of priority for conservation, which might offer a better chance of preventing the species from total extinction. However, it stressed that the rhino poaching ‘pandemic’ needs to be defeated, because it puts further strain on the genetic diversity of the black rhino. 

Extinct in many African countries 
The research report further said that black rhino had been hunted and poached to extinction in many parts of Africa, such as Nigeria, Chad, Cameroon, Sudan, and Ethiopia. These rhino are now only found in five African countries. They are Tanzania, Zimbabwe, Kenya, Namibia, and South Africa, where the majority of the animals can be found. 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept