Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 January 2018 Photo Charl Devenish
Researcher tackling drug-resistant TB through molecular methods
Dr Anneke van der Spoel van Dijk is invested in contributing to the global effort of stopping TB by 2035.

The work of Dr Anneke van der Spoel van Dijk investigates the spread of TB in the Free State population using techniques such as next generation sequencing, spoligotyping and MIRU-VNTR typing. Dr Van der Spoel van Dijk, a senior medical scientist in the Department of Medical Microbiology at the University of the Free State (UFS) also looks at drug resistance in her research. This work informs decisions about how best to treat patients with multidrug-resistant TB (MDR-TB). 

She employs rapid molecular techniques to track one of Africa’s most serious diseases, tuberculosis (TB). 

Drug resistance
Scientists assist the National Health Laboratory Service and Department of Health in trying to refine the diagnostic tools to identify these cases earlier. Dr Van der Spoel van Dijk explains: “Until recently, it took up to two years to fine-tune treatment decisions for patients with MDR-TB. Patients get a cocktail of anti-TB drugs, but it takes time to find the right combination. Re-infection and relapse (patients stopping treatment for several reasons) add to the diagnostic and treatment management challenges.

Enormous impact
“Now doctors can reduce the time needed for diagnostic certainty to about seven days, while new drugs allow reduction of treatment from more than 18 to nine months. This can have an enormous impact on the life of many patients.”

Dr Van der Spoel van Dijk’s work forms part of research in the faculty looking at resistance development in TB strains. She is currently also doing her doctoral thesis on the differences and incidence of MDR-TB among adolescents versus adults. Dr Van der Spoel van Dijk says: “It is a complicated picture, but we hope to unravel it to support better diagnostic tools and patient care.”

As part of the National Health Laboratory Service, her department is playing an important role in TB diagnostics and the training of scientists and future pathologists. “Our work is contributing to the global vision to stop TB by 2035,” Dr Van der Spoel van Dijk says.

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept