Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 January 2018 Photo Charl Devenish
UFS researcher publishes the highest-cited Maths paper in the world in 2017
An article by Prof Abdon Atangana from the University of the Free State’s Institute for Groundwater Studies received New Hot Paper status from Clarivate Analytics.

An article on Applied Mathematics, published by Prof Abdon Atangana from the University of the Free State’s Institute for Groundwater Studies in 2017, was recently named New Hot Paper by Clarivate Analytics.

Hot paper status
Essential Science Indicators (ESI) is a unique and comprehensive compilation of science performance statistics and science trends. Data is based on journal article publication counts and citation data from Clarivate Analytics that enables researchers to conduct ongoing, quantitative analyses of research performance and track trends in science. Covering a multidisciplinary selection of 1 2000+ journals from around the world, this in-depth analytical tool offers data for ranking papers, scientists, institutions, countries, and journals. 

ESI from Clarivate Analytics is updated every two months. The New Hot Papers, which are papers published in the past two years, are in the top one-tenth of one percent (0.1%) for their field and publication period. Prof Atangana’s paper had the highest cite count in the field of Mathematics. 

His article that received the New Hot Paper status is titled: “The new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation”.

The concept of fractional differential operators with non-singular kernel has captured the minds of several researchers in the past year due to their wider applicability in almost all fields of science, engineering and technology. The new fractional differential operators have opened new windows to model complex real-world problems that could not be modelled using the Newtonian and the well-known Riemann-Liouville fractional differential operators. 

“These operators are the way forward in modelling real-world problems in all disciplines, as they are able to include into mathematical formulation the effect of memory,” Prof Atangana said.

The Atangana-Baleanu fractional derivative
The professor developed a new fractional differential operator, called the Atangana-Baleanu fractional derivative. This derivative is able to describe real-world problems with different scales or problems that change their properties during time and space, for instance, the spread of cancer; the flow of water within heterogeneous aquifers, movement of pollution within fractured aquifers and many others.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept