Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2018 Photo Supplied
AEVGI advances Next-Generation Sequencing in Africa
Prof George Armah, Noguchi Memorial Institute for Medical Research, Ghana; Prof Carl Kirkwood, Bill and Melinda Gates Foundation, USA; Cornelius Hagenmeier, Director: Internationalisation, UFS; Prof Gert van Zyl, Dean: Health Sciences; Dr Martin Nyaga, Senior Lecturer in the NGS Unit; Prof Joyce Tsoka-Gwegweni, Vice-Dean: Health Sciences; Dr Glen Taylor, Senior Director: Research and Development; Prof Jeffrey Mphahlele, Vice-President, South African Medical Research Council.

The inaugural edition of the University of the Free State (UFS) Next-Generation Sequencing (NGS) Data and Bioinformatics Workshop, hosted by the UFS-NGS Unit in the UFS Faculty of Health Sciences, marked a new beginning for the advancement of NGS in Africa under the auspices of the African Enteric Viruses Genome Initiative (AEVGI), which was recently funded by the Bill and Melinda Gates Foundation.

The AEVGI will generate rotavirus genomes at the UFS-NGS Unit to investigate the long-term effects of the introduction of the monovalent RV1 vaccine in three African countries – Ghana, Malawi, and South Africa.

The workshop attracted over 90 participants from 15 national and international institutions, with organisations from seven different countries as well as company representatives attending the event. The workshop kicked off with a courtesy call to the Rector and Vice-Chancellor, Prof Francis Petersen, followed by a stakeholder meeting with the executive management of the UFS.

The funding was secured through an award to the principal investigator, Dr Martin Nyaga, and sub-awards to co-investigators, Dr Khuzwayo Jere, Dr Francis Dennis, and Dr Valentine Ndze. According to attendee evaluations of the workshop, the remarkable performance of the workshop instructors was outstanding. Through practical sessions, participants were equipped with knowledge on how to apply several tools of genetic data analysis, using the rotavirus genome as a model to construct and interpret different genomic datasets.

A total of 65 students attended the hands-on workshop, the majority of which were from South African higher-education institutions. The organisers are grateful to the sponsors, particularly to the Bill and Melinda Gates Foundation and the University of the Free State, for making the workshop a success. Whitehead Scientific and the South African Medical Research Council also played a major role in the success of the workshop. The local organising committee consisted of Dr Martin Nyaga (host, convener and chair), Dr Saheed Sabiu (secretary), and Mr Stephanus Riekert (principal ICT support).

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept