Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 July 2018 Photo Leonie Bolleurs
Research informs about sustainable use of fresh water for food production
Conducting research on the topic of water-footprint assessment, are from the left: Dr Enoch Owusu-Sekyere, Dr Henry Jordaan, study leader and Senior Lecturer in the UFS Department of Agricultural Economics, Dr Frikkie Maré (Head of the Department of Agricultural Economics), and Adetoso Adetoro.

The fact that South Africa is a water-scarce country has been highlighted during the past couple of years, and even city dwellers were suddenly very aware of the drought due to the strict water restrictions. These are the words of Dr Frikkie Maré, Head of the Department of Agricultural Economics at the University of the Free State (UFS) and one of the graduates who received his PhD on water-footprint assessment studies at the recent June 2018 graduations.

The department is currently involved in various water-footprint and water-management research projects which assist in providing solutions for better water management in the future. “As department, we want to be at the forefront of research that will assist all agricultural producers with sustainable production practices to ensure economic, environmental, and social sustainable food and fibre products for the society at large,” said Dr Maré.

Research funded by Water Research Commission

The UFS recently conferred two PhD degrees (Drs Enoch Owusu-Sekyere and Frikkie Maré) and one master’s degree (Adetoso Adetoro) in the Department of Agricultural Economics. All three have been working in the field of water-footprint assessment. The research formed part of two different projects that were initiated and funded by the Water Research Commission.

According to Dr Henry Jordaan, Senior Lecturer in this department, four of his students already received their master’s degrees on the topic of water-footprint assessment, while two students are busy with PhDs and three more are working on their master’s degrees.

Topic gains momentum in research community
The water-footprint concept serves as a useful indicator to sensitise society about the impact of the food we eat on scarce freshwater resources – from agricultural producers using water to produce primary food crops and products on the farm, to the end consumer buying the food products in the retail store in town.

“Water-footprint assessment is a relatively new field aimed at informing the sustainable use of fresh water for food production. This topic is gaining momentum in the research community, given the substantial increase in the global population in the context of freshwater resources that is getting increasingly scarce. The challenge is to feed the growing population while still using the scarce freshwater resources sustainably.

Volume of water used to produce food

“In order to inform water users on how to use the resource sustainably, it is important to know the volume of water that was used to produce the required food products. Through our research, we are contributing to this knowledge by assessing the volume of water that was used to produce selected products, and to interpret the water use in the context of water availability to gain insight into the degree of sustainability with which the resource is used. The results are expected to inform water users, water managers, and policy makers regarding the sustainable use of fresh water for food production,” said Dr Jordaan.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept