Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 July 2018 Photo Supplied
Rynardt and Lynique selected for SA team at World Cup
Long jumper Lynique Beneke is one of two Kovsies selected for the South African team to the inaugural Athletics World Cup.

University of the Free State (UFS) middle-distance runner, Rynardt van Rensburg, and long jumper, Lynique Beneke, have both secured a spot in the South African athletics team for the inaugural edition of the Athletics World Cup to be held in London, United Kingdom, on 14 and 15 July 2018. 

The 2018 domestic rankings were used to select the team, with one UFS athlete in each discipline set to represent the country as one of the eight competing nations at the event. Beneke, aged 27, won the long jump for women over the past two years at the national track and field championships, this year with a winning distance of 6,22 m. Van Rensburg, aged 26, won silver.

South Africa will compete against teams from the United States, Poland, China, Germany, France, Jamaica, Great Britain, and Northern Ireland. Beneke and Van Rensburg are both experienced athletes who have competed in the Olympic Games in 2016. The programme for the two-day championship does not include long-distance or combined event disciplines. Yolandi Stander, Van Rensburg, and Beneke have also been selected as part of the preliminary team for the CAA African Championships taking place in Asaba, Nigeria from 1 to 5 August 2018.

Van Rensburg recently clocked his personal best, which was also recorded as the 24th best time of the year, when he finished the Hengelo World Challenge meeting in 1:45.15.
Stander, who has a personal best of 52,81 m, won the bronze medal at this year’s nationals and a silver at the University Sports South Africa (USSA) meeting.

News Archive

Death may come in adorable little packages
2015-03-23

The main host of the Lassa virus is the Natal Mulimammate mouse.

Photo: Supplied

Postdoctoral researcher, Abdon Atangana, of the Institute for Groundwater Studies at the university recently published an article online about the Lassa Haemorrhagic fever in the Natural Computing Applications Forum. In addition to the terminal transmissible sickness recognised as Ebola haemorrhagic fever, there is another strain called Lassa haemorrhagic fever.

The disease is classified under the arenaviridae virus family. The first outbreaks of the disease were observed in Nigeria, Liberia, Sierra Leone, and the Central African Republic. However, it was first described in 1969 in the town of Lassa, in Borno State, Nigeria.

The main host of the Lassa virus is the Natal Mulimammate mouse, an animal indigenous to most of Sub-Saharan Africa. The contamination in humans characteristically takes place through exposure to animal excrement through the respiratory or gastrointestinal tracts.

Mouthfuls of air containing tiny particle of infective material are understood to be the most noteworthy way of exposure. It is also possible to acquire the infection through broken skin or mucous membranes that are directly exposed to the infective material.

“The aim of my research was to propose a novel mathematical equation used to describe the spread of the illness amongst pregnant women in West Africa. To achieve this, I used my newly-proposed derivative with fractional order called beta-derivative. Since none of the commonly used integral transform could be used to derive the solution of the proposed model, I proposed a new integral transform called Atangana-Transform, and used it, together with some iterative technique, to derive the solution of the model.

“My numerical simulations show that the disease is as deadly amongst pregnant women as Ebola,” Abdon said.

Abdon’s research was submitted to one of Springer’s top-tier journals with an impact factor 1.78. The paper was accepted and published February 2015.

Read more about Abdon’s research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept