Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 July 2018 Photo Supplied
Rynardt and Lynique selected for SA team at World Cup
Long jumper Lynique Beneke is one of two Kovsies selected for the South African team to the inaugural Athletics World Cup.

University of the Free State (UFS) middle-distance runner, Rynardt van Rensburg, and long jumper, Lynique Beneke, have both secured a spot in the South African athletics team for the inaugural edition of the Athletics World Cup to be held in London, United Kingdom, on 14 and 15 July 2018. 

The 2018 domestic rankings were used to select the team, with one UFS athlete in each discipline set to represent the country as one of the eight competing nations at the event. Beneke, aged 27, won the long jump for women over the past two years at the national track and field championships, this year with a winning distance of 6,22 m. Van Rensburg, aged 26, won silver.

South Africa will compete against teams from the United States, Poland, China, Germany, France, Jamaica, Great Britain, and Northern Ireland. Beneke and Van Rensburg are both experienced athletes who have competed in the Olympic Games in 2016. The programme for the two-day championship does not include long-distance or combined event disciplines. Yolandi Stander, Van Rensburg, and Beneke have also been selected as part of the preliminary team for the CAA African Championships taking place in Asaba, Nigeria from 1 to 5 August 2018.

Van Rensburg recently clocked his personal best, which was also recorded as the 24th best time of the year, when he finished the Hengelo World Challenge meeting in 1:45.15.
Stander, who has a personal best of 52,81 m, won the bronze medal at this year’s nationals and a silver at the University Sports South Africa (USSA) meeting.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept