Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2018 Photo Supplied
Digging up truth South Africa was way different to what you thought
Archaeological excavations in the Wonderwerk Cave, north of Kuruman in the Northern Cape.

Research fellow Dr Lloyd Rossouw from the Department of Plant Sciences at the University of the Free State (UFS) recently published an article in the Nature Ecology and Evolution journal with Dr Michaela Ecker from the University of Toronto as lead author, and Dr James Brink, research fellow at the UFS Centre for Environmental Management. The findings described in “The palaeoecological context of the Oldowan-Acheulean in southern Africa” provides the first extensive paleoenvironmental sequence for the interior of southern Africa by applying a combination of methods for environmental reconstruction at Wonderwerk Cave, which have yielded multiple evidence of early human occupation dating back almost two million years ago.

Where water once was
The Wonderwerk Cave is found north of the Kuruman hills (situated in Northern Cape) a 140m long tube with a low ceiling. The surroundings are harsh. Semi-arid conditions allow for the survival of only hardy bushes, trees, and grasses. But during the Early Pleistocene, stepping out of the Wonderwerk Cave you would have been greeted by a completely different site, the researchers found. Using carbon and oxygen stable isotope analysis on the teeth of herbivores (Dr Ecker), fossil faunal abundance (Dr Brink), as well as the analysis of microscopic plant silica remains (phytoliths) excavated from fossil soils inside the cave (Dr Rossouw), the results show that ancient environments in the central interior of southern Africa were significantly wetter and housed a plant community unlike any other in the modern African savanna. 

What difference does it make?
While East African research shows increasing aridity and the spread of summer-rainfall grasslands more than a million years ago, the results from this study indicate an interesting twist. During the same period, shifts in rainfall seasonality allowed for alternating summer and winter-rainfall grass occurrences coupled with prolonged wetlands, that remained major components of Early Pleistocene (more or less the period between one and two million years ago) environments in the central interior of southern Africa. That means our human ancestors were also living and evolving in environments other than the generally accepted open, arid grassland model.

News Archive

Final lecture in Darwin series presented at the UFS
2010-02-23

At the lecture were, from the left: Prof. Terence McCarthy, Prof. Jo van As, Chairperson of the Darwin 200 Committee and Head of the Department of Zoology and Entomology at the UFS, Prof. Bruce Rubidge, Elsabe Brits, journalist at Die Burger and Esther van der Westhuizen, presenter on Groen.
Photo: Leonie Bolleurs


The University of the Free State (UFS), in collaboration with the Central University of Technology, Free State (CUT) and The National Museum in Bloemfontein recently hosted the final lecture on the Charles Darwin lecture series entitled “The story of life and survival”.

The lecture was presented by Prof. Bruce Rubidge, the Director of the Bernard Price Institute for Paleontological Research at Wits University and Prof. Terence McCarthy, a Professor of Mineral Geochemistry at Wits and Head of the Department of Geology. Proff. Rubidge and McCarthy are co-authors of the book The Story of Life on Earth.

Their lecture with the topic “Trends in evolution and their bearing on the future of humankind” dealt with the future of evolution. According to Prof. Rubidge, ninety-nine percent of the species that have ever lived are extinct. “We are living in a time of mass extinction. Fifty thousand species become extinct annually,” he said.

Prof. McCarthy discussed many factors that can result in mankind’s extinction today. The impact of climate change, big volcanic eruptions, a comet or asteroid hitting earth, tsunamis and the collapsing of sea islands are some of the factors Prof. McCarthy believes could cause great catastrophe’s on earth.

“We live on the brink of this all the time,” he said.

Prof. McCarthy also believes that we can avoid these catastrophes. By allowing only one child per family we can shrink the global population with 30% per generation. This is doable in a short time span,” he said.

Other ideas he had on saving mankind from getting extinct is to create extensive ecological reserves on land but especially in the ocean, to decentralise everything, to change to renewable energy, to recycle resources and to be vigilant in doing this.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept