Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2018 Photo Supplied
Digging up truth South Africa was way different to what you thought
Archaeological excavations in the Wonderwerk Cave, north of Kuruman in the Northern Cape.

Research fellow Dr Lloyd Rossouw from the Department of Plant Sciences at the University of the Free State (UFS) recently published an article in the Nature Ecology and Evolution journal with Dr Michaela Ecker from the University of Toronto as lead author, and Dr James Brink, research fellow at the UFS Centre for Environmental Management. The findings described in “The palaeoecological context of the Oldowan-Acheulean in southern Africa” provides the first extensive paleoenvironmental sequence for the interior of southern Africa by applying a combination of methods for environmental reconstruction at Wonderwerk Cave, which have yielded multiple evidence of early human occupation dating back almost two million years ago.

Where water once was
The Wonderwerk Cave is found north of the Kuruman hills (situated in Northern Cape) a 140m long tube with a low ceiling. The surroundings are harsh. Semi-arid conditions allow for the survival of only hardy bushes, trees, and grasses. But during the Early Pleistocene, stepping out of the Wonderwerk Cave you would have been greeted by a completely different site, the researchers found. Using carbon and oxygen stable isotope analysis on the teeth of herbivores (Dr Ecker), fossil faunal abundance (Dr Brink), as well as the analysis of microscopic plant silica remains (phytoliths) excavated from fossil soils inside the cave (Dr Rossouw), the results show that ancient environments in the central interior of southern Africa were significantly wetter and housed a plant community unlike any other in the modern African savanna. 

What difference does it make?
While East African research shows increasing aridity and the spread of summer-rainfall grasslands more than a million years ago, the results from this study indicate an interesting twist. During the same period, shifts in rainfall seasonality allowed for alternating summer and winter-rainfall grass occurrences coupled with prolonged wetlands, that remained major components of Early Pleistocene (more or less the period between one and two million years ago) environments in the central interior of southern Africa. That means our human ancestors were also living and evolving in environments other than the generally accepted open, arid grassland model.

News Archive

Summer programme a first outside Austria
2012-12-06

 

Mr Derek Hanekom, Minister of Science and Technology
Foto: Johan Roux

05 Desember 2012

People often fight about their differences, like skin colour, religion and more. “These differences are minute. We must celebrate our common ancestry and commit ourselves to a common destiny. Your work can make a difference.” This is according to Mr Derek Hanekom, Minister of Science and Technology.

He opened the Southern African Young Scientists Summer Programme (SA-YSSP) at the Bloemfontein Campus on Sunday 2 December 2012. The UFS is the first institution outside Austria to host the Summer Programme. A total of 19 young researchers from 17 countries will be hosted by the UFS until 28 February 2013. Researchers in the programme are, among others, from South Africa, Egypt, China, Italy, Sweden, Iran, Hungary, India, the USA and Indonesia.

The programme will form part of an annual three-month education, academic training and research capacity-building programme jointly organised by the International Institute for Applied Systems Analysis (IIASA), based in Austria, the National Research Foundation (NRF) and the Department of Science and Technology (DST). IIASA is an international research organisation that conducts policy-oriented scientific research in the three global problem areas of energy and climate change, food and water and poverty and equity. South Africa’s engagements with IIASA, specifically with regard to the SA-YSSP, relate primarily to the DST’s Ten-Year Innovation Plan.

Mr Hanekom spoke about the impact the growing global population, which is expected to grow from 7 billion in 2012 to 9 billion in 2050, has on natural resources. “We use purified water to flush our toilets while other people do not have clean drinking water. We cannot carry on like this. Somewhere it must stop, if we do not want to be responsible for the 6th great extinction. We must know how our systems impact on each other.

“We can do things differently and better and should endeavour that other people enjoy luxuries we take for granted,” he said.

He urged the researchers to believe that they can make a difference, share knowledge and translate the knowledge into plans.

Prof. Dr Pavel Kabat, Director/CEO of IIASA, said the summer programme was presented outside Austria for the first time, with plans to expand to Brazil and China in future. Twenty countries are represented on the IIASA board, with more than 3 000 researchers associated with the organisation.

IIASA was launched in 1972 in the days of the Cold War as a “science bridge” between the West and the Soviet Union. It served as a “think tank” for various issues that needed to be resolved. Its mission was reconfirmed after the fall of the Berlin Wall in 1989.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept