Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2018 Photo Supplied
Digging up truth South Africa was way different to what you thought
Archaeological excavations in the Wonderwerk Cave, north of Kuruman in the Northern Cape.

Research fellow Dr Lloyd Rossouw from the Department of Plant Sciences at the University of the Free State (UFS) recently published an article in the Nature Ecology and Evolution journal with Dr Michaela Ecker from the University of Toronto as lead author, and Dr James Brink, research fellow at the UFS Centre for Environmental Management. The findings described in “The palaeoecological context of the Oldowan-Acheulean in southern Africa” provides the first extensive paleoenvironmental sequence for the interior of southern Africa by applying a combination of methods for environmental reconstruction at Wonderwerk Cave, which have yielded multiple evidence of early human occupation dating back almost two million years ago.

Where water once was
The Wonderwerk Cave is found north of the Kuruman hills (situated in Northern Cape) a 140m long tube with a low ceiling. The surroundings are harsh. Semi-arid conditions allow for the survival of only hardy bushes, trees, and grasses. But during the Early Pleistocene, stepping out of the Wonderwerk Cave you would have been greeted by a completely different site, the researchers found. Using carbon and oxygen stable isotope analysis on the teeth of herbivores (Dr Ecker), fossil faunal abundance (Dr Brink), as well as the analysis of microscopic plant silica remains (phytoliths) excavated from fossil soils inside the cave (Dr Rossouw), the results show that ancient environments in the central interior of southern Africa were significantly wetter and housed a plant community unlike any other in the modern African savanna. 

What difference does it make?
While East African research shows increasing aridity and the spread of summer-rainfall grasslands more than a million years ago, the results from this study indicate an interesting twist. During the same period, shifts in rainfall seasonality allowed for alternating summer and winter-rainfall grass occurrences coupled with prolonged wetlands, that remained major components of Early Pleistocene (more or less the period between one and two million years ago) environments in the central interior of southern Africa. That means our human ancestors were also living and evolving in environments other than the generally accepted open, arid grassland model.

News Archive

Plant-strengthening agent enhances natural ability of plants to survive
2015-07-27

Drought, diseases, and fungi. These are factors that farmers have no control over, and they often have to watch despondently as their crops are damaged. In addition, the practice of breeding plants in special and strictly-controlled conditions, has resulted in crops losing the chemical ability to protect themselves in nature.

Researchers in the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS) have developed an organic agent that restores this chemical imbalance in plants. It enables the plant to build its own resistance against mild stress factors, and thus ensures increased growth and yield by the plant.

ComCat®, a plant-strengthening agent, is the result of extensive research by the German company, Agraforum AG, together with the UFS. Commercialisation was initially limited to Europe, while research was done at the UFS.

“Plants have become weak because they were grown specially and in isolation. They can’t protect themselves any longer,” says Dr Elmarie van der Watt from the department.

Dr Van der Watt says that, in nature, plants communicate by means of natural chemicals as part of their resistance mechanisms towards various stress conditions. These chemicals enable them to protect themselves against stress conditions, such as diseases and fungi (biotic conditions) or wind and droughts (abiotic conditions).

Most wild plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent.

The European researchers extracted these self-protection chemicals from wild plants, and made them available to the UFS for research and development.

“This important survival mechanism became dormant in monoculture crops. ComCat® wakes the plant up and says ‘Hey, you should start protecting yourself’.”

Research over the last few years has shown that the agent, applied mostly as a foliar spray, subsequently leads to better seedlings, as well as to growth, and yields enhancement of various crops. This is good news for the agricultural sector as it does not induce unwanted early vegetative growth that could jeopardise the final yield ? as happened in the past for nitrogen application at an early growth stage.

“The use of synthetic agents, such as fungicides which contain copper, are now banned. Nowadays, options for natural and organic agriculture is being investigated. This product is already widely used in Europe, but because farmers are often swamped by quacks, the South African market is still somewhat sceptical.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept