Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2018 Photo Supplied
Kovsie netball out to break drought
Former South African Under-21 representative in her fourth year as Kovsie player, Lefébre Rademan, is the new Kovsie captain for the upcoming national student champions

The Kovsie netball team is out to claim back its title at the University Sport South Africa (USSA) tournament in 2018. 

The tournament takes place from 2 to 6 July 2018 on the Bloemfontein Campus of the University of the Free State (UFS). It has been exactly 20 years since the event was last staged in the City of Roses. The last time the Kovsies were able to win the trophy was in 2013. Tanya Mostert, Kovsie netball goal defender who will play her sixth USSA tournament this coming July, is the only remaining member from the previous squad.

The Kovsie netball squad field a strong team comprising 12 players who have represented the province, and they are also considered the strongest contenders in the upcoming championships. The Free State Crinums are the only university team to field 12 players with senior provincial experience. Khanyisa Chawane, who was named Player of the Tournament at the conclusion of the Premier League, recovered sufficiently from her ankle injury and has been appointed as the team’s vice-captain.

Taking the reigns as the new Kovsie netball team captain is the versatile Lefébre Rademan.
 
The six teams in the Super league will compete from Monday 2 July to Wednesday 4 July, with the semi-final and final matches following on Thursday 5 July and Friday 6 July 2018.

The following players will form the team for the USSA tournament: Alicia Puren, Ané Retief, Gertriana Retief, Jana Scholtz, Khanyisa Chawane, Khomotso Mamburu, Lefébre Rademan (captain), Marétha van Heerden, Marna Claassens, Meagan Roux, Sikholiwe Mdletshe, Tanya Mostert.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept