Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2018 Photo Thabo Kessah
Young researcher to jet out to UK
Mamosa Ngcala who leaving for the United Kingdom on 31 July 2018.

When Mamosa Ngcala jets out to the United Kingdom (UK) on 31 July 2018, she will not only be doing research and improving herself academically at the Durham University, but she will also put yet another feather in the growing research profile cap of the Qwaqwa Campus.

“I am looking forward to my study visit under the mentorship of Dr Steve Chivasa, my supervisor’s co-researcher in the Department of Biosciences at the renowned Durham University. This will enable me to grow academically as much as it will get me closer to concluding my research on climate change and food security,” said Mamosa, a master’s student in Science (Botany). Her supervisor is Dr Rudo Ngara.

“Going there will fast-track my research that looks at how food security can be enhanced in as far as growing sorghum is concerned. This study in Plant Biotechnology aims to identify heat responsive genes in sorghum, which is the fifth most important cereal crop in the world. The information obtained in this study will serve as fundamental knowledge regarding molecular responses of plants to heat stress and will be used in breeding programmes to develop crops that can tolerate high temperature stress conditions caused by climate change, thus resulting in high crop yield in agriculture as well as food security,” she said. She will be in the UK until 12 September 2018.

Mamosa has recently won the 3-Minute thesis competition for graduates that was part of the ‘Sorghum in the 21st Century’ international conference held in Cape Town.

Talking about this achievement, she said: “Going head-to-head with PhD students from all over the world gave me extra motivation and drive to do well, and I did. This goes to show that we can achieve whatever we put our minds to. Having to summarise my entire study in three minutes for a non-specialist audience, using one PowerPoint slide, was a challenge that had to be overcome,” said Mamosa. The conference was organised by the Collaborative Research on Sorghum and Millet and the University of Pretoria.

Mamosa graduated with distinction in Botany for her honours degree. She is a member of the Golden Key International Honour Society and Chairperson of the Postgraduate Student Council and is looking forward to advancing her studies to PhD level.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept