Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2018 Photo Leonie Bolleurs
Second triumph for young pollution and pharmaceutical researcher
Emmie Chiyindiko, winner of Famelab.

“I am grateful to be reaping the benefits of stepping out of my comfort zone. By facing the unfamiliar, that challenge will allow me to see what great things I am capable of,” said Emmie Chiyindiko, winner of Famelab 2018.

With FameLab, the world’s leading science communication competition, participants have just three minutes to win over the judges and crowd with a scientific talk that excels in content, clarity and charisma. Contestants from around the world participate, armed only with their wits and a few props.

Emmie won the Postgraduate School’s Three-Minute-Thesis competition for master’s level in 2017.

She said: “My research is based on the synthesis and characterisation of a series of unique metal complexes.” These complexes are used both as active pharmaceutical ingredients and cosmetic additives to reduce the detrimental effects of UV radiation on the skin. They are incorporated into anti-ulcer, gastro protective drugs, anti-asthmatic, lung disease drugs, with anti-cancer and anti-diabetic agents,” she said.

With her research she can also monitor air pollution. Formaldehyde is a known toxin to human health. “Using metal complexes, I am able to monitor the production of formaldehyde and consequently come up with exposure prevention methods,” said Emmie.

She believes that it is okay to not ”fit in“. “Mannerisms such as your quirks make you different and distinctive. Live your life intentionally, imprint your personal mark on this universe and always choose faith over fear.”

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept