Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2018 Photo Leonie Bolleurs
Second triumph for young pollution and pharmaceutical researcher
Emmie Chiyindiko, winner of Famelab.

“I am grateful to be reaping the benefits of stepping out of my comfort zone. By facing the unfamiliar, that challenge will allow me to see what great things I am capable of,” said Emmie Chiyindiko, winner of Famelab 2018.

With FameLab, the world’s leading science communication competition, participants have just three minutes to win over the judges and crowd with a scientific talk that excels in content, clarity and charisma. Contestants from around the world participate, armed only with their wits and a few props.

Emmie won the Postgraduate School’s Three-Minute-Thesis competition for master’s level in 2017.

She said: “My research is based on the synthesis and characterisation of a series of unique metal complexes.” These complexes are used both as active pharmaceutical ingredients and cosmetic additives to reduce the detrimental effects of UV radiation on the skin. They are incorporated into anti-ulcer, gastro protective drugs, anti-asthmatic, lung disease drugs, with anti-cancer and anti-diabetic agents,” she said.

With her research she can also monitor air pollution. Formaldehyde is a known toxin to human health. “Using metal complexes, I am able to monitor the production of formaldehyde and consequently come up with exposure prevention methods,” said Emmie.

She believes that it is okay to not ”fit in“. “Mannerisms such as your quirks make you different and distinctive. Live your life intentionally, imprint your personal mark on this universe and always choose faith over fear.”

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept