Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 March 2018 Photo Pexels
Water footprint important but misunderstood indicator
Water footprinting is the future of water conservation

The Water Footprint (WF) of a product, process or person provides an indication of how much fresh water is used, both direct and indirect, to produce a product, drive the process or lead a lifestyle. Although it is a very important indicator it is often misunderstood. Popular media contribute to this misunderstanding as they often use the WF to illustrate the large quantities of water used to produce a product without explaining what the footprint actually means.  

An example is a single kilogram of beef that has an average global WF 15 415 litres. This indeed sounds scary, but when one places it in context, the total WF includes 14 414 litres green water, 550 litres blue water and 451 litres grey water. Green water is the evapotranspiration of precipitation (rain), blue water is the fresh water from dams, rivers and underground sources, while grey water is the amount of fresh water required to dilute polluted water to acceptable levels.

According to Frikkie Maré, a lecturer at the Department of Agricultural Economics at the University of the Free State (UFS), the WF concept provides a new look at water conservation and sustainability. “Although the WF is not an indicator of sustainable water use, it is a useful tool to calculate total water demand and is used in the estimation of sustainability. Traditionally, water conservation was focused on the direct water use of individuals (time taken to shower, leaking taps etc.), but the WF now provides a tool to focus attention on total water demand.”

The Water Footprint Network assists individuals with this new trajectory on the water conservation front with the personal water footprint calculator that allows individuals globally to determine their personal water demand through their direct and indirect water usage. Maré believes this can cause the necessary paradigm shift in the aqua status quo by creating awareness among consumers on their total water demand.

With Water Week underway from 17-23 March 2018, UFS students and staff members are urged to make use of the personal water footprint calculator in order to become aware of the real importance of fresh water in our everyday lives.

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept