Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 March 2018 Photo Pexels
Water footprint important but misunderstood indicator
Water footprinting is the future of water conservation

The Water Footprint (WF) of a product, process or person provides an indication of how much fresh water is used, both direct and indirect, to produce a product, drive the process or lead a lifestyle. Although it is a very important indicator it is often misunderstood. Popular media contribute to this misunderstanding as they often use the WF to illustrate the large quantities of water used to produce a product without explaining what the footprint actually means.  

An example is a single kilogram of beef that has an average global WF 15 415 litres. This indeed sounds scary, but when one places it in context, the total WF includes 14 414 litres green water, 550 litres blue water and 451 litres grey water. Green water is the evapotranspiration of precipitation (rain), blue water is the fresh water from dams, rivers and underground sources, while grey water is the amount of fresh water required to dilute polluted water to acceptable levels.

According to Frikkie Maré, a lecturer at the Department of Agricultural Economics at the University of the Free State (UFS), the WF concept provides a new look at water conservation and sustainability. “Although the WF is not an indicator of sustainable water use, it is a useful tool to calculate total water demand and is used in the estimation of sustainability. Traditionally, water conservation was focused on the direct water use of individuals (time taken to shower, leaking taps etc.), but the WF now provides a tool to focus attention on total water demand.”

The Water Footprint Network assists individuals with this new trajectory on the water conservation front with the personal water footprint calculator that allows individuals globally to determine their personal water demand through their direct and indirect water usage. Maré believes this can cause the necessary paradigm shift in the aqua status quo by creating awareness among consumers on their total water demand.

With Water Week underway from 17-23 March 2018, UFS students and staff members are urged to make use of the personal water footprint calculator in order to become aware of the real importance of fresh water in our everyday lives.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept