Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2018 | Story Rulanzen Martin | Photo Charl Devenish
Africa Day Memorial Lecture explores future of statues
From the left are: Dr Stephanie Cawood, Acting Director of the CGAS; Prof Heidi Hudson, Dean of the Faculty of the Humanities; Prof Prakash Naidoo, Vice-Rector: Operations; and Dr Rahul Rao.

Read Lectures here

Drawing from different international perspectives on the topic of historical statues, the importance of debate surrounding the future of these symbols resounded at the 10th Annual Africa Day Memorial Lecture. 

The lecture was hosted on 23 May 2018 by the newly renamed Centre for Gender and Africa Studies and was presented by Dr Rahul Rao from the SOAS University of London, where he is a senior lecturer in Politics. 

“I am very excited about my trip to South Africa and to be here among you. This is my first trip to South Africa, and it is very exciting and also a little bit emotional for me, particularly because I got my first passport in 1984 when I was six years old, and it said – valid for travel to all countries except the Republic of South Africa. You know why that was the case.”

“I salute all of you for the transformation that has been affected in this country, and I think Africa Day is the perfect occasion to celebrate the transformation.”  

Student activism through #MustFall movements
“I first heard in March 2015 that students from the University of Cape Town have begun demonstrating to take down the statue of Cecil John Rhodes and have it removed from their campus, and a bit later, students from the University of Oxford in the United Kingdom followed suit. At first, I felt some guilt having been a Rhodes Scholar from 2001 to 2004, because you must embody the values of Cecil John Rhodes,” Dr Rao said.

“I have watched from afar the events that have taken place here, for example, the #RhodesMustFall Movement, and the reverberation of these events in other places; I mean, the way these events travel,” he said.

Students in Cape Town, Oxford, and Bloemfontein are doing something concrete and collective to dismantle the legacy of colonialism and Apartheid. “I feel connected to these events, even if I am far away.”

International perspective on historical statues
In both SA and the UK, the call for iconography decolonisation was accompanied and soon overtaken by different accounts. It also gives a broader and different perspective on how statues can be used to achieve racial or social dominance. 

One of the many examples he used, was the ambush against Confederate Statues in the American South. These statues are symbols of upholding a white supremacist ideology in the South. The Confederate States of America was the predecessor to the current United States of America.

He also spoke about the temporalities of statues, the decolonisation and recolonisation, as well as the aesthetics of statues, among other things. “Statues don't need permission to thrust itself upon us. They demand attention,” Dr Rao said. This is because statues are placed in the centre of public spaces but are also vulnerable and exposed. 

He left the audience with some questions on what to do with statues that are taken down, and who to erect new statues for.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept