Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 May 2018 Photo Naledi Posholi
Could wave power be an answer to SAs electricity crisis
Attending a recent guest lecture, were from the left: Prof Marian Tredoux UFS Department of Geology, Prof Stoffel Fourie fromWalter Sisulu University, and Thoriso Lekoetje a third-year UFS Geology student.

South Africa has a 2800-km long coastline with high wave energy potential that can generate electricity. Presenting a lecture at the UFS Department of Geology, Prof Stoffel Fourie discussed wave power as a possible solution to the country’s electricity needs. Prof Fourie is a geophysicist and the chairperson of research and development in the faculty of engineering at Walter Sisulu University.

Power at any time
Wave power is a renewable and sustainable resource. “It can provide continuous base load power because wave energy systems do not suffer from ‘time of day’ issues as other renewable energy options. This means that it can generate power at any time of the day,” said Prof Fourie. 
Discussed also was the wave power advantages and disadvantages. 

Wave energy advantages
• Wave energy is a reliable renewable energy resource;

• Reduces dependency on fossil fuels;

• Wave energy is predictable and consistent;

• Generates little or no pollution to the environment compared to other energy resources; and

• Presents no barriers or difficulty to migrating fish and aquatic animals.

Wave energy disadvantages
• Wave energy conversion devices are location dependent, thus limiting possible sites where they can be implemented;

• Offshore wave energy devices can be a threat to shipping as they are too small to detect by radar; and

• High capital investment required for start-up costs, construction and maintenance.

“Looking at both advantages and disadvantages, there is no doubt that South Africa can use this method to harvest energy. With the right investment and political buy-in, wave power could provide a continuous supply of energy and contribute to all South Africa’s electricity needs,” Prof Fourie said.

News Archive

It is not every day you get to build a heart
2014-09-17

According to the World Health Organisation, heart disease is the leading cause of death world wide. Heart transplantations substantially outperform any other available treatment and extend life by an average of 15 years, but the shortage of donor organs and organ rejection still remain a challenge.

Getting closer to the day where it will be possible to produce human organs by using human cells, researchers at the University of the Free State (UFS) announced that they have successfully decellularized a primate heart.

Decellularization is the process of taking an organ and stripping its cells, leaving behind a framework of binding tissue. The organ can then be repopulated (recellularized) with the patient's own cells - a process considered to move heart research closer to the day when a patient can become his own donor.

This process was discovered in 2008 by American cardiologist, Dr Doris Taylor of the University of Minnesota, who decellularized and recellularized a beating rat heart in a laboratory.

World wide researchers already used the process of decellularization on rat and pig hearts, but the research team of the UFS is the first to use this on a primate heart.

Complete media release.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept