Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 May 2018 Photo Anja Aucamp
Microbiology department receives Research Chair in Pathogenic Yeasts Prof Carlien Pohl-Albertyn
Prof Carlien Pohl-Albertyn, Professor in the Department of Microbial, Biochemical and Food Biotechnology


The National Research Foundation (NRF) recently approved a fifth research chair for the University of the Free State (UFS), the Research Chair in Pathogenic Yeasts. Prof Carlien Pohl-Albertyn from the Department of Microbial, Biochemical and Food Biotechnology, will be chairing this research chair. 

Activities of the Research Chair in Pathogenic Yeasts builds on existing research strengths and will contribute towards understanding pathobiology of medically significant pathogenic yeasts belonging to the genera Candida and Cryptococcus. 

According to Prof Pohl-Albertyn, the research group, established in 2014, is the only one in South African focusing on understanding the role of bioactive lipids in host-pathogen interaction as well as in the search for novel drug targets. The group brought together three principal investigators, Prof Pohl-Albertyn, Prof Koos Albertyn and Dr Olihile Sebolai, with knowledge regarding various virulence factors (including immunomodulatory metabolites) produced by the Candida and Cryptococcus as well as molecular biology of yeasts. Besides the three principal investigators, the group also includes five PhD students, nine MSc students, four BSc honours students as well as two postdoctoral fellows. 

Current projects of the group include the production of immunomodulatory compounds by the yeasts, finding novel targets for antifungal drugs and the interaction between the yeasts and different hosts using a variety of infection models. In addition, the interaction between pathogenic yeasts and other co-infecting pathogens is also being investigated. 

Why research on fungal infections?
“As a result of presently used treatments for diseases and HIV/Aids, and the advances in medical interventions, many diseases no longer pose a threat to humans and life expectancy is prolonged. However, this has also caused an increase in various opportunistic infections, and most of all, fungal infections.

“With an increase in the number of individuals sensitive to invasive fungal infections, yeasts have begun to be reported more frequently as pathogens (yeasts that can cause disease). Infections by pathogenic yeasts affect a wide variety of patients. Although most of them are immunosuppressed (including HIV positive) other underlying conditions may predispose people to such infections. These include extremes of age (premature infants and the elderly), diabetes, cancer and cystic fibroses. In addition, patients hospitalised in intensive care units, as well as patients undergoing major abdominal or thoracic surgery are at high risk of invasive candidiasis. Similarly, HIV/Aids, liver cirrhosis and immunosuppressive therapy are known risk factors for invasive cryptococcosis,” said Prof Pohl-Albertyn.

According to her an important hurdle in the treatment of invasive yeast infection is the emergence of drug resistance in these pathogens. Therefore, research into pathobiology, including new drug targets, as well as novel treatment options, is a necessity. 

In line with the UFS research strategy
The NRF call for research chairs, specifically aimed at female researchers at universities that currently have fewer than 15 research chairs, came out in May 2017.

The university considers the current SARChi Chairs and the possibility of future chairs as an integral and strategic initiative to increase its national and international standing through excellent academic and research leadership. A Research Chair in Pathogenic Yeasts is therefore an invaluable addition to the UFS Research Strategy. 

The Research Chair is for five years, and is renewable for three terms.

Microbiology from University of the Free State on Vimeo.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept