Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2018 | Story Leonie Bolleurs | Photo Stephen Collett
Inaugural lecture focuses on aspects of soil classification
Prof Cornie Van Huyssteen delivered his inaugural lecture on the topic: ‘The world in a grain of sand’, at the ninth inaugural lecture at the UFS this year.

Humans classify their environment to create order, make it more understandable, aid recollection and to communicate. As important it is for humans to classify their environments, so it is to classify soil, said Prof Cornie van Huyssteen.

Prof Van Huyssteen has studied and recorded data on soil worldwide to find the most appropriate use of land, in among others, the agriculture and mining sector and for urban development. 

It is all about soil

He was vice-chair of the International Union of Soil Sciences working group for the World Reference Base, and president of the Soil Science Society of South Africa. From 1991 to 1999 he worked at the Institute for Soil, Climate and Water of the Agricultural Research Council, where he aided in the land type survey and spatial analysis of soil data.

At his recent inauguration to full professor Prof Van Huyssteen delivered the ninth inaugural lecture at the University of the Free State’s Bloemfontein Campus for 2018, talking about a matter close to his heart, soil. He titled the lecture: ‘The world in a grain of sand’. 

Relevant to irrigation scheduling

A professor in the UFS Department of Soil, Crop and Climate Sciences, Prof Van Huyssteen’s research focuses on the relationship between soil morphology and soil hydrology. It can mostly be applied to hydropedology, wetland delineation, urban development, mining EIAs, irrigation scheduling and soil classification.

Prof Van Huyssteen joined the UFS in 2000, and in 2004, he completed his PhD in Soil Science. He is also author or co-author of 25 reviewed papers.

News Archive

Two scientists part of team that discovers the source of the highest energy cosmic rays at the centre of the Milky Way
2016-03-22

Description: Giant molecular clouds  Tags: Giant molecular clouds

Artist's impression of the giant molecular clouds surrounding the Galactic Centre, bombarded by very high energy protons accelerated in the vicinity of the central black hole and subsequently shining in gamma rays.
Artist's impression: © Dr Mark A. Garlick/ H.E.S.S. Collaboration

Spotlight photo:
Dr Brian van Soelen and Prof Pieter Meintjes of the UFS Department of Physics.
Photo: Charl Devenish

H.E.S.S. (High Energy Stereoscopic System) scientists publically revealed their latest galactic discovery in the international science journal, Nature, on 16 March 2016. These scientists were able to pinpoint the most powerful source of cosmic radiation – which, up to now, remained a mystery.

Part of this team of scientists are Prof Pieter Meintjes and Dr Brian van Soelen, both in the University of the Free State (UFS) Department of Physics. Dr Van Soelen explains that they have discovered a proton PeVatron – a source that can accelerate protons up to energies of ~1 PeV (10^15 eV) – at the centre of the Milky Way. The supermassive black hole called Sagittarius A has been identified as the most plausible source of this unprecedented acceleration of protons.

The protons are accelerated to Very High Energy (VHE) gamma rays. The energy of these protons are 100 times larger than those achieved by the Large Hadron Collider at CERN (the European Organization for Nuclear Research).

According to Dr Van Soelen, the fact that this research has been published in Nature demonstrates the importance and pioneering nature of the research conducted by H.E.S.S. The H.E.S.S. observatory – operational in Namibia – is a collaboration between 42 scientific institutions in 12 countries.

In 2006, H.E.S.S. was awarded the Descartes Prize of the European Commission – the highest recognition for collaborative research – and in 2010 the prestigious Rossi Prize of the American Astronomical Society. The extent of the observatory’s significance places it among the ranks of the Hubble Space Telescope and the telescopes of the European Southern Observatory in Chile.

“The next generation VHE gamma-ray telescope,” Dr Van Soelen says, “will be the Cherenkov Telescope Array (CTA), which is currently in the design and development stage.” Both Dr Van Soelen and Prof Meintjes are part of this project as well.

H.E.S.S. has issued a complete statement about the paper published in Nature.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept