Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 October 2018 | Story UFS | Photo Varsity Sports
First ever netball final in Bloemfontein
The Kovsies will be aiming to lift the Varsity Netball trophy in front of their home supporters on Monday when they face Tuks in the final in the Callie Human Centre.

The netball team of the University of the Free State, once again after five years, earned themselves the right to stage a final in the Varsity Netball competition. The two-time champion, the Dream Team, qualified for the final after topping the log and then wiping the floor with the Maties on Monday (1 October 2018) in the semi-final. The score was 56-45. 

They will come up against Tuks in the Callie Human Centre on the UFS Bloemfontein Campus for the final tonight. The match will get underway at 18:45.

The team won the very first two years of the competition in 2013 and 2014. On both occasions, they had to play away from home – in 2013 against the Pukke in Potchefstroom and in 2014 against Tuks in Pretoria. 

It will be the fourth meeting between the Kovsies and Tuks within three months. The Free State students won the group fixture in August by 68-43, but Tuks had to do without a number of their star players. At the University Sport South Africa tournament in Bloemfontein during July, Tuks triumphed twice, winning the final by 48-30.

Apart from the winners’ medals, an award will be handed to the tournament’s top player. Centre Khanyisa Chawane is one of three finalists. The winner gets chosen through public votes.

Dream Team players have won the prize four of the five times. Ané Botha was crowned in 2013, Karla Pretorius in 2014 and 2015, and last year it was the turn of current Kovsie player, Khomotso Mamburu.

To vote for Chawane, click here hover your mouse over the like button and choose the heart emoticon. Voting is closing on 5 October and the winner will be announced after the final.

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept