Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2018 | Story UFS | Photo UFS
Prof Ashok Chapagain, recently appointed as Senior
Prof Ashok Chapagain, recently appointed as Senior Professor in the Department of Agricultural Economics in the Faculty of Natural and Agricultural Sciences at the University of the Free State, is looking forward to working with key water-related sectors.

Prof Ashok Chapagain has recently been appointed as Senior Professor in the Department of Agricultural Economics in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS). 

Water hub key in collaborations with research institutes

According to Prof Chapagain, the position provides a unique opportunity to help establish the university at the forefront of water research in South Africa. He is looking forward to cross-departmental collaborations on innovative research projects working with key water-related sectors, such as agriculture, business, mining etc., and establishing a water hub that would be key in external collaborations with other research institutes in South Africa and beyond.

Prior to his formal appointment at the UFS, Prof Chapagain has been remotely involved with the Department of Agricultural Economics since 2017 through his support to a number of research projects funded by the Water Research Commission (WRC). 

He is experienced in managing and coordinating international and interdisciplinary projects, ensuring technical quality and project delivery. He has vast cultural and geographical work experience, and specific water-related experience in the fields of integrated water resource management, water footprint assessment, industrial and agricultural efficiency and sustainability, irrigation, hydrology and watershed modelling, flood-risk management, river-basin planning and management, and environmental impact assessment. He has recently left the Water Footprint Network (The Netherlands), where he worked in the capacity of Science Director. Prior to joining the WFN, Prof Chapagain worked as Senior Water Adviser at WWF-UK for about six years.

Systems approach to address water issues

Prof Chapagain holds a PhD in the field of Water Resources Management and Policy Analysis from Delft University of Technology (The Netherlands), an MSc degree in Water and Environmental Resources Management from UNESCO- IHE Institute for Water Education (The Netherlands), and a Bachelor’s in Civil Engineering from IIT Roorkee (India). His professional career of 28 years can be broadly grouped under two inter-related blocks: development projects for 10 years (as an irrigation engineer in Nepal); research and application for 18 years (academia for eight years and applied work for 10 years in the Netherlands and UK). During his MSc and PhD research, he specialised in water resources and environmental management, integrated river-basin management, policy analysis, and systems analysis.

He regularly reviews articles for several scientific journals. Currently he serves as the Editor-in-Chief for the recently launched open access scientific journal H2Open, published by IWA Publishing. In addition, he serves as editor for five scientific journals, and frequently guest edits specific issues for peer-reviewed scientific journals. He has published four books, and 64 other articles and reports (25 scientific journal articles, 40 papers in conference proceedings, book chapters, and technical reports). His publications are widely cited, with 10 436 citations, and has an h-index of 34 and i10-index of 44. He applies a system approach in addressing issues on water, energy, and food securities, where managing local resources also includes global dimensions where key stakeholders are often cross-sectoral and situated outside the boxes. He has been involved in many national and international projects as a team leader, project leader, and international expert in several Asian, European, and South American countries.

For more information about Prof Chapagain and his role in the Department of Agricultural Economics, please contact Prof Chapagain at ChapagainAK@ufs.ac.za, or Dr Frikkie Maré at MareFA@ufs.ac.za or +27 51 401 2824 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept