Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 October 2018 Photo Charl Devenish
PhD students compete in three-minute thesis competition
The ten PhD students who participated in the Three-Minute-Thesis Competition.

Ten Doctor of Philosophy (PhD) students from five universities across the country were pitted against one another in the robust finals of the annual national Three-Minute Thesis (3MT) competition, held at the University of the Free State (UFS).

Postgraduate School Assistant Officer, Kamogelo Dithebe, said this is a research-communication competition developed by the University of Queensland, whereby PhD students are given three minutes to present a compelling oration on their thesis and its significance.

The competition challenges students to consolidate their ideas and research discoveries to be presented concisely to a non-specialist audience.

Developed in 2008, enthusiasm for the 3MT concept and its adoption in numerous universities has led to the development of an international competition. Students become eligible to participate in the national competition once they have participated in the competition at institutional level.
 
Dithebe stated that the institutional winner and the runner-up become eligible for representation at national level. Institutions that participated in the 2018 national competition were the University of KwaZulu-Natal, the University of Johannesburg, the University of Cape Town, Durban University of Technology, as well as the hosts, the University of the Free State.

Research on water-leakage problems comes out tops

The University of Cape Town’s Civil Engineering student, Rene Nsanzubuhoro, pipped all his counterparts to walk away with a R16 000 prize as well as a People’s Choice prize of R6 000 – this is where the audience were given ballots to vote for their choice. His topic was: Fighting leakage one pipe at a time

The core focus of his research was leakage in water-pipe systems. This is a major concern to water utilities for several reasons, including loss of a limited resource, pumping energy, revenue loss, and increased health risk as leaks are potential entry points for contaminants if a pressure drop occurs in the system. In the study, a novel device for assessing the condition of water-pipe systems was designed, constructed, and tested.

Research on clean water takes a second spot

The runner-up was a Chemical Engineering student from the University of Johannesburg, Oluwademilade Fayemiyo, who won a prize of R11 000. Her topic was: From wine to water: Searching within for clean water.

Two students from the University of the Free State, Trudie Strauss and Nokuthula Tlalajoe, represented the institution.

Strauss, who is a Mathematical Statistics student, talked about: Babelish Confusion: Finding statistical structure in the diversity of language.

Tlalajoe, a Health Professions Education student, presented the topic: Multiple transition for undergraduate first-year students in the MB CHB programme: Expectations, Experiences, and Emotions.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept