Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 October 2018 | Story UFS | Photo Stephen Collett
Using ethnomathematics to enhance understanding maths
An ethnomathematical approach helps to create a connection between mathematics in the classroom and the real world, said Prof Mogege Mosimege during his inaugural lecture.

The integration of ethnomathematical approaches and studies in the teaching and learning of mathematics is almost certainly bound to change how learners view and understand mathematics. It is the opinion of Prof Mogege Mosimege of the School of Natural Sciences and Technology Education in the Faculty of Education at the University of The Free State (UFS), where Prof Mosimege delivered his inaugural lecture.

His research interests include sociocultural contexts in mathematics education (ethnomathematics), mathematical modelling; indigenous knowledge systems and mathematics teacher education.

Classroom maths must connect real world 

He says an ethnomathematical approach does not only serve as a sound basis for a deeper conceptual understanding, but it also helps to create a connection between mathematics in the classroom and the real world.

Prof Mosimege says the foundation phase of the South African school mathematics curriculum indicates, amongst others, that there must be a critical awareness of how mathematical relationships are used in social, environmental, cultural and economic relations, and that there must be a deep conceptual understanding in order to make sense of mathematics.

"I want to argue the current curriculum does not give enough space for that," he says. "The minute you say deep conceptual understanding you must do things differently and not just teach formulae, but also teach why things work the way they do."

Prof Mosimege says the classroom activities teachers engage in must be able to push learners to that deep understanding phase.

He says even at the Further Education and Training Phase real-life problems should be incorporated into all mathematical sections whenever appropriate.

Teachers need to make maths real


"Contextual problems should include issues relating to health, social, economic, cultural, scientific, political and environmental issues whenever possible."

 If done this way teachers will make mathematics to become real. "It will perhaps not be as abstract as it is perceived, and will help our learners and students to understand why it is important to relate what they do to real life."

Prof Mosimege says his future work would be to look past the phase of focusing strictly on procedural aspects of mathematics and look further at an ethnomathematics bridge to mathematical modelling, which is his next area of research. He says the definitions of ethnomathematics suggest that mathematical concepts and processes would be more comfortable and better understood by the learner when they are related to sociocultural contexts as well as real-life situations.

"How can we use ethnomathematics to do problem-solving?" he asks. 

News Archive

Darwin lecture focuses on the genetic foundation of evolution
2009-05-22

 
The Department of Genetics at the University of the Free State (UFS) recently made their contribution to the story of life and survival by presenting two lectures on The genetic foundation of evolution. Prof. Johan Spies, Head of the Department of Genetics at the UFS discussed the variation that was created by mutations and how this variation was enhanced by re-combination. He also pointed out that these methods contributed relatively little to the gene pool of a species and that the expansion of the gene pool primarily took place by means of chromosome evolution. The latter also contributed to the creation of isolation mechanisms to prevent hybridism. He further emphasised the multitude of deviations of mendelian heredity, which contributed to more variation within a species.

Prof. Paul Grobler, Associate Professor from this department, next pointed out how natural selection played a role to form new species. He used various examples to indicate how the process took its course, for example, lactose intolerance. He also reported out that the man on the street mostly believed that Darwin with his theory of the survival of the fittest meant that the physically strongest species would survive. It was more a case of the one that could reproduce the fastest and the most, that would survive, he stated.

Present at the occasion were, from left front: Ms Letecia Jonker, student, Prof. Grobler, Ms Paula Spies, lecturer at the Department of Genetics and Ms Zurika Odendaal, junior lecturer at the Department of Genetics; back: Prof. Spies.
Photo: Stephen Collett

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept