Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 October 2018 | Story UFS | Photo Stephen Collett
Using ethnomathematics to enhance understanding maths
An ethnomathematical approach helps to create a connection between mathematics in the classroom and the real world, said Prof Mogege Mosimege during his inaugural lecture.

The integration of ethnomathematical approaches and studies in the teaching and learning of mathematics is almost certainly bound to change how learners view and understand mathematics. It is the opinion of Prof Mogege Mosimege of the School of Natural Sciences and Technology Education in the Faculty of Education at the University of The Free State (UFS), where Prof Mosimege delivered his inaugural lecture.

His research interests include sociocultural contexts in mathematics education (ethnomathematics), mathematical modelling; indigenous knowledge systems and mathematics teacher education.

Classroom maths must connect real world 

He says an ethnomathematical approach does not only serve as a sound basis for a deeper conceptual understanding, but it also helps to create a connection between mathematics in the classroom and the real world.

Prof Mosimege says the foundation phase of the South African school mathematics curriculum indicates, amongst others, that there must be a critical awareness of how mathematical relationships are used in social, environmental, cultural and economic relations, and that there must be a deep conceptual understanding in order to make sense of mathematics.

"I want to argue the current curriculum does not give enough space for that," he says. "The minute you say deep conceptual understanding you must do things differently and not just teach formulae, but also teach why things work the way they do."

Prof Mosimege says the classroom activities teachers engage in must be able to push learners to that deep understanding phase.

He says even at the Further Education and Training Phase real-life problems should be incorporated into all mathematical sections whenever appropriate.

Teachers need to make maths real


"Contextual problems should include issues relating to health, social, economic, cultural, scientific, political and environmental issues whenever possible."

 If done this way teachers will make mathematics to become real. "It will perhaps not be as abstract as it is perceived, and will help our learners and students to understand why it is important to relate what they do to real life."

Prof Mosimege says his future work would be to look past the phase of focusing strictly on procedural aspects of mathematics and look further at an ethnomathematics bridge to mathematical modelling, which is his next area of research. He says the definitions of ethnomathematics suggest that mathematical concepts and processes would be more comfortable and better understood by the learner when they are related to sociocultural contexts as well as real-life situations.

"How can we use ethnomathematics to do problem-solving?" he asks. 

News Archive

Chemistry gets substantial grants
2013-06-10

 

At the experimental setup of the high temperature reduction oven for research in heterogeneous catalysis are, front from left: Maretha Serdyn (MNS Cluster prestige PhD bursar), Nceba Magqi (Sasol employee busy with his MSc in Chemistry) and Dr Alice Brink (Formal MNS Cluster postdoctoral fellow and lecturer in Inorganic Chemistry); back Profs Jannie Swarts (Head: Physical Chemistry), André Roodt, and Ben Bezuidenhoudt (Sasol Professor in Organic and Process Chemistry).
10 June 2013

Three research groups in the Department of Chemistry received substantial grants to the value of R4,55 million. The funding includes bursaries for students and post-doctoral fellows, mobility grants, running costs and equipment support, as well as dedicated funds for two young scientists in the UFS Prestige Scholar Programme, Drs Lizette Erasmus and Alice Brink.

The funding comes from Sasol, the THRIP programme of the National Research Foundation (NRF) and PetLabs Pharmaceuticals for the overarching thrust in Organic Synthesis, Homogeneous and Heterogeneous Catalysis. The programme has a broad focuse on different fundamental and applied aspects of process chemistry. Research groups of Profs Andreas Roodt (Inorganic), Jannie Swarts (Physical) and Ben Bezuidenhoudt (Organic / Process), principal members of the focus area of (Green) Petrochemicals in the Materials and Nanosciences Strategic Research Cluster (MNS Cluster) will benefit from the grant.

This funding was granted based on the continued and high-level outputs by the groups, which resulted in more than 40 papers featuring in international chemistry publications in merely the past year. A few papers also appeared in the top experimental inorganic chemistry journal from the American Chemical Society, Inorganic Chemistry. These high-impact papers address important issues in catalysis under the UFS Material and Nanosciences Research Cluster initiative, as well as other aspects of fundamental chemistry, but with an applied approach and focus.

Prof Andreas Roodt, Distinguished Professor and Chairperson of the Department of Chemistry, said the grants will enable the three research groups to move forward in their respective research areas associated with petrochemicals and other projects, and enable additional students in the department to benefit from it. It will also ensure that these groups can continue and maintain their research on different molecular and nano-scale materials. Current experiments include conversions under extremely high gas pressures (typical 100 times that in motor car tyres). This takes place at the molecular level and at preselected nano-surfaces, to convert cheaper feed-stream starting materials into higher value-added products for use as special additives in gasoline and other speciality chemicals.

The funding support forms part of the Hub-and-Spoke initiative at Sasol under which certain universities and specifically the UFS Department of Chemistry have been identified for strategic support for research and development. The department and the UFS gratefully acknowledge this continued and generous support from all parties concerned.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept