Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 October 2018 | Story UFS | Photo Stephen Collett
Using ethnomathematics to enhance understanding maths
An ethnomathematical approach helps to create a connection between mathematics in the classroom and the real world, said Prof Mogege Mosimege during his inaugural lecture.

The integration of ethnomathematical approaches and studies in the teaching and learning of mathematics is almost certainly bound to change how learners view and understand mathematics. It is the opinion of Prof Mogege Mosimege of the School of Natural Sciences and Technology Education in the Faculty of Education at the University of The Free State (UFS), where Prof Mosimege delivered his inaugural lecture.

His research interests include sociocultural contexts in mathematics education (ethnomathematics), mathematical modelling; indigenous knowledge systems and mathematics teacher education.

Classroom maths must connect real world 

He says an ethnomathematical approach does not only serve as a sound basis for a deeper conceptual understanding, but it also helps to create a connection between mathematics in the classroom and the real world.

Prof Mosimege says the foundation phase of the South African school mathematics curriculum indicates, amongst others, that there must be a critical awareness of how mathematical relationships are used in social, environmental, cultural and economic relations, and that there must be a deep conceptual understanding in order to make sense of mathematics.

"I want to argue the current curriculum does not give enough space for that," he says. "The minute you say deep conceptual understanding you must do things differently and not just teach formulae, but also teach why things work the way they do."

Prof Mosimege says the classroom activities teachers engage in must be able to push learners to that deep understanding phase.

He says even at the Further Education and Training Phase real-life problems should be incorporated into all mathematical sections whenever appropriate.

Teachers need to make maths real


"Contextual problems should include issues relating to health, social, economic, cultural, scientific, political and environmental issues whenever possible."

 If done this way teachers will make mathematics to become real. "It will perhaps not be as abstract as it is perceived, and will help our learners and students to understand why it is important to relate what they do to real life."

Prof Mosimege says his future work would be to look past the phase of focusing strictly on procedural aspects of mathematics and look further at an ethnomathematics bridge to mathematical modelling, which is his next area of research. He says the definitions of ethnomathematics suggest that mathematical concepts and processes would be more comfortable and better understood by the learner when they are related to sociocultural contexts as well as real-life situations.

"How can we use ethnomathematics to do problem-solving?" he asks. 

News Archive

Four modernised controlled environment cabinets inaugurated
2006-07-27

Photographed in a controlled environment cabinet were at the back from the left:  Mr Adriaan Hugo (head of the UFS Electronics and Mechanisation Division), Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences at the UFS) and Prof Koos Terblans (lecturer at the UFS Department of Physics).  In front is Mr Koos Uys (engineering consultant from Experto Designa who helped with the cooling systems of the cabinets).
Photo: Leonie Bolleurs

Different look for research in controlled circumstances at the UFS  

Research in controlled circumstances at the University of the Free State (UFS) turned a new page today with the inauguration of four modernised controlled environment cabinets of the Department of Soil, Crop and Climate Sciences.

“The controlled environment cabinets, which are situated next to the glass houses on the eastern side of the Agriculture Building on the Main Campus in Bloemfontein, were installed in the early 1980’s.  The cabinets, used for research purposes in controlled circumstances by the UFS for many years, became dysfunctional and needed to be repaired and put into use again,” said Prof Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS.

“The cabinets are used by the agronomics, horticulture and soil science divisions of the Department of Soil, Crop and Climate Sciences to control factors such as the temperature, the intensity and quality of light, synthesis and humidity.  This is done 24 hours a day, with hourly intervals,” said Prof Van Schalkwyk.

The cabinets are ideally suited to determine the joint and separate effects of these factors on the growth of plants.  The adaptability of plants to climate can also be investigated under controlled circumstances.  All of this leads to a better understanding of the growth and development process of plants, more specifically that of agricultural crops. 

“The effect of these environmental factors on the effectiveness of insect killers such as fungus killers, insecticide and weed killers can also be investigated and can help to explain the damage that is sometimes experienced, or even prevent the damage if the research is timeously,” said Prof Van Schalkwyk.

A new cabinet can cost between R2-3 million, depending on the degree of sophistication.  “Although controlled environment cabinets have been used for agricultural research for a long time, it has become costly to maintain them     and even more impossible to purchase new ones,” said Prof Van Schalkwyk.

According to Prof Van Schalkwyk the cabinets were re-built by die UFS Electronics and Mechanisation Division.  Some of the mechanisms were also replaced and computerised.   

“The re-building and mechanisation of the cabinets were funded by the faculty and because the work was done by our own staff, an amount of about R1 million was saved.  The maintenance costs will now be lower as the cabinets are specifically tailor made for our research needs,” said Prof Van Schalkwyk.

Where all monitoring was done manually in the past, the cabinets can now be controlled with a computer.  This programme was designed by Prof Koos Terblans from the UFS Department of Physics. 

According to Prof Van Schalkwyk the modernisation of the cabinets is part of the faculty’s larger strategy to get its instruments and apparatus up to world standards.  “With this project we have proved that we can find a solution for a problem ourselves and that there are ways to get old apparatus functional again,” said Prof Van Schalkwyk.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
26 July 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept