Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2018 Photo Stephen Collett
Mathematician makes popular contribution to science Prof Atangana
Prof Atangana is the first African under 40 years of age to be selected as African Academic of Science affiliated in Mathematics. He recently delivered his inaugural lecture and is pictured with Eelco Lukas, Director of the Institute for GroundwaterStudies at the UFS (middle) and Prof Hendri Kroukamp, Acting Vice-Rector: Academic

Prof Abdon Atangana, researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), recently delivered his inaugural lecture on the topic: Understanding God’s Nature with Non-Local Operators.

His research interests are methods and applications of partial and ordinary differential equations, fractional differential equations, perturbation methods, asymptotic methods, iterative methods, and groundwater modelling. Prof Atangana is the founder of the fractional calculus with non-local and non-singular kernels popular in applied mathematics today. He has introduced more than 12 mathematical operators, most of which bear his name (such as the Atangana-Baleanu fractional integral).

He stated: “We will not stop until we change the classical view of doing mathematics. Mathematics is not a subject but a tool given to mankind by God to understand nature. One single mathematical operator cannot portray God’s nature accurately. Therefore the Atangana Baleanu was suggested.”

New weapons

Most physical problems can be expressed in terms of mathematical formulations called differential equations. According to him the differential equation’s aim is to analyse, understand, and predict the future of a physical problem. Prof Atangana introduced the Atangana-Baleanu fractional integral. This brought new weapons into applied mathematics to model complex real-world problems more accurately.

Prof Atangana explained: “The Atangana-Baleanu fractional derivative is able to describe real-world problems with different scales, or problems that change their properties during time and space for instance, the spread of cancer, the flow of water within heterogeneous aquifers, movement of pollution within fractured aquifers, and many others. This crossover behaviour is observed in many empirical systems.”

Sudden change

The Atangana-Baleanu fractional derivative is also able to describe physical or biological phenomena, such as a heart attack, the physiological progression from life to death, structural failure in an aeroplane, and many other physical occurrences with sudden change with no steady state.

The new differential and integral operators are nowadays in fashion and are being applied with great success in many fields to model complex natural phenomena. It is believed that the future of modelling complex real-world problems relies on these non-local operators.

News Archive

Deborah Meier on Education and Social Justice
2012-06-18

 

With Deborah Meier is, from the left: Brian Naidoo, Senior Lecturer: Department of English; and Rèné Eloff, Research Assistant at the International Institute for Studies in Race, Reconciliation and Social Justice.
Photo: Johan Roux
18 June 2012

Celebrated author and educator, Deborah Meier, recently visited the university. Meier, ranked among the most acclaimed leaders of the school reform movement in the United States, spoke about democracy and education at a Critical Conversation hosted by the International Institute for Studies in Race, Reconciliation and Social Justice.

Speaking from her experience of the United States education system, Meier said that she had always been primarily concerned by the fact that schools were not engaging children in discussions about important and difficult topics such as democracy, race and class. As far as democracy was concerned, Meier pointed out that most schools viewed the occasional voting exercise as a lesson in democracy. However, as far as she was concerned, voting was the least important aspect of democracy. She admitted that democracy was almost impossible define, but in her view engaging with this difficulty was, in itself, an important democratic act – an act which could and should find its rightful place in the classroom.

Meier pointed out that children were effectively “incarcerated” for the six hours they spent at school every day. She expressed her grave concern about the fact that this time was not used to nurture and develop the considerable energy and creativity that young children had. Meier envisioned a school that could rise up to this challenge. At one point she mused, “Did I miss something? Did we invent some other institution that was taking on this responsibility?”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept