Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2018 Photo Stephen Collett
Mathematician makes popular contribution to science Prof Atangana
Prof Atangana is the first African under 40 years of age to be selected as African Academic of Science affiliated in Mathematics. He recently delivered his inaugural lecture and is pictured with Eelco Lukas, Director of the Institute for GroundwaterStudies at the UFS (middle) and Prof Hendri Kroukamp, Acting Vice-Rector: Academic

Prof Abdon Atangana, researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), recently delivered his inaugural lecture on the topic: Understanding God’s Nature with Non-Local Operators.

His research interests are methods and applications of partial and ordinary differential equations, fractional differential equations, perturbation methods, asymptotic methods, iterative methods, and groundwater modelling. Prof Atangana is the founder of the fractional calculus with non-local and non-singular kernels popular in applied mathematics today. He has introduced more than 12 mathematical operators, most of which bear his name (such as the Atangana-Baleanu fractional integral).

He stated: “We will not stop until we change the classical view of doing mathematics. Mathematics is not a subject but a tool given to mankind by God to understand nature. One single mathematical operator cannot portray God’s nature accurately. Therefore the Atangana Baleanu was suggested.”

New weapons

Most physical problems can be expressed in terms of mathematical formulations called differential equations. According to him the differential equation’s aim is to analyse, understand, and predict the future of a physical problem. Prof Atangana introduced the Atangana-Baleanu fractional integral. This brought new weapons into applied mathematics to model complex real-world problems more accurately.

Prof Atangana explained: “The Atangana-Baleanu fractional derivative is able to describe real-world problems with different scales, or problems that change their properties during time and space for instance, the spread of cancer, the flow of water within heterogeneous aquifers, movement of pollution within fractured aquifers, and many others. This crossover behaviour is observed in many empirical systems.”

Sudden change

The Atangana-Baleanu fractional derivative is also able to describe physical or biological phenomena, such as a heart attack, the physiological progression from life to death, structural failure in an aeroplane, and many other physical occurrences with sudden change with no steady state.

The new differential and integral operators are nowadays in fashion and are being applied with great success in many fields to model complex natural phenomena. It is believed that the future of modelling complex real-world problems relies on these non-local operators.

News Archive

UFS takes further steps to address load shedding
2015-02-24

The South African economy is experiencing its worst electricity crisis since 2008, with state power firm Eskom implementing load shedding as it struggles to meet growing demand for power.

The University of the Free State (UFS) has been planning and implementing projects to reduce the impact of load shedding since 2008. This was done primarily to ensure that the academic programme does not suffer as a result of the increasing cuts in power supply, which continued this year.

The university’s main concern is the supply of emergency power to lecture halls and laboratories.

Up to date, 35 generators are serving 55 buildings on the three campuses of the UFS. This includes 26 generators on the Bloemfontein Campus, eight on the Qwaqwa Campus in the Eastern Free State and one generator on the South Campus in Bloemfontein. The generators are serviced regularly and kept in a working condition.

Since 2010, the university has also ensured that all new academic buildings being built were equipped with emergency power.

On the South Campus in Bloemfontein the new lecture hall building and the Computer Laboratory are equipped with emergency power, while the installation of emergency power generators in other buildings is underway. Most of the buildings on the Qwaqwa Campus in the Eastern Free State are provided with emergency power.

“To expand on the work that have already been done, the main objective in the installation of more generators on the Bloemfontein Campus will be to ensure that lecture halls with emergency power are available on the centrally booked timetables and that more of the critical laboratories are equipped with emergency power,” said Mr Nico Janse van Rensburg, Senior Director: University Estates.

“There are still some critical buildings and venues on the Bloemfontein Campus that must be equipped with emergency power. However, this is a costly process and will have to be phased in over a period of time. The further implementation of emergency power is dependent on delivery times of equipment. The university is also looking into alternative power supply solutions, such as solar power,” he said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept