Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2018 Photo Stephen Collett
Mathematician makes popular contribution to science Prof Atangana
Prof Atangana is the first African under 40 years of age to be selected as African Academic of Science affiliated in Mathematics. He recently delivered his inaugural lecture and is pictured with Eelco Lukas, Director of the Institute for GroundwaterStudies at the UFS (middle) and Prof Hendri Kroukamp, Acting Vice-Rector: Academic

Prof Abdon Atangana, researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), recently delivered his inaugural lecture on the topic: Understanding God’s Nature with Non-Local Operators.

His research interests are methods and applications of partial and ordinary differential equations, fractional differential equations, perturbation methods, asymptotic methods, iterative methods, and groundwater modelling. Prof Atangana is the founder of the fractional calculus with non-local and non-singular kernels popular in applied mathematics today. He has introduced more than 12 mathematical operators, most of which bear his name (such as the Atangana-Baleanu fractional integral).

He stated: “We will not stop until we change the classical view of doing mathematics. Mathematics is not a subject but a tool given to mankind by God to understand nature. One single mathematical operator cannot portray God’s nature accurately. Therefore the Atangana Baleanu was suggested.”

New weapons

Most physical problems can be expressed in terms of mathematical formulations called differential equations. According to him the differential equation’s aim is to analyse, understand, and predict the future of a physical problem. Prof Atangana introduced the Atangana-Baleanu fractional integral. This brought new weapons into applied mathematics to model complex real-world problems more accurately.

Prof Atangana explained: “The Atangana-Baleanu fractional derivative is able to describe real-world problems with different scales, or problems that change their properties during time and space for instance, the spread of cancer, the flow of water within heterogeneous aquifers, movement of pollution within fractured aquifers, and many others. This crossover behaviour is observed in many empirical systems.”

Sudden change

The Atangana-Baleanu fractional derivative is also able to describe physical or biological phenomena, such as a heart attack, the physiological progression from life to death, structural failure in an aeroplane, and many other physical occurrences with sudden change with no steady state.

The new differential and integral operators are nowadays in fashion and are being applied with great success in many fields to model complex natural phenomena. It is believed that the future of modelling complex real-world problems relies on these non-local operators.

News Archive

UFS Department of Physics offers unique learning experience with on-campus radio telescope
2015-12-14

Athanasius Ramaila, an Honours student in the Department of Physics, and Dr Brian van Soelen, a lecturer from the same department, in the laboratory where the radio telescope is housed in the new wing of the Physics Building on the Bloemfontein Campus of the UFS. The telescope will be used to expose graduate students to the basic techniques of radio astronomy.
Photo: Charl Devenish

The university this year added a four-storey wing to the existing Physics Building on the Bloemfontein Campus. The new development, which includes four lecture halls and four laboratories, complements other world-class facilities such as the X-ray photoelectron spectroscope and the scanning electron microscope.

A unique asset that distinguishes the UFS Department of Physics from other similar institutions, is the Boyden Observatory situated approximately 27 km northeast of Bloemfontein. The observatory houses a powerful 1.5 m optical telescope, and several smaller, but well equipped telescopes.

According to Pieter Meintjes, Professor in the Department of Physics, the observatory has acquired a new addition - a 0.5 m optical telescope donated by the South African Astronomical Observatory (SAAO) and the National Research Foundation (NRF) to the UFS Astrophysics Group. This optical telescope is one of two powerful optical telescopes used to introduce students to techniques such as photometry and spectroscopy.

“The telescope at Boyden forms an integral part of the Department of Physic’s student training and research programme. Because the UFS is the only university in South Africa operating such a facility, and one of only a few globally, Astrophysics students at the UFS have the unique privilege of having unrestricted access to these telescopes for their MSc and PhD studies,” says Prof Meintjes. In addition, the department has also built a radio telescope as part of a post-graduate student project. The telescope, housed in the new wing of the Physics Building at the Bloemfontein Campus of the UFS, will be used to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA is nascent. Prof Meintjes would like to act proactively by grounding his students in the relevant techniques of radio astronomy. The telescope will be used to introduce students to the manner in which radio flux calibrations are performed in order to determine the energy output of an emitting source.

At undergraduate level, the radio telescope will be used, together with optical telescopes in the Astrophysics laboratory, to place students at a high baseline regarding the level of multi-wavelength astrophysics training received at the UFS.

Third-year and Honours students will also have the opportunity of practical training in a research laboratory with 15 computers. The laboratory is equipped with software used to reduce and analyse multi-wavelength data.

“My goal is for the UFS to become the major centre of multi-wavelength astrophysics in South Africa and a key role player in the international arena. To be able to do this, our training should be world class,” Prof Meintjes said.

Aided by its world-class facilities and research, the Department of Physics is competing with the best in the world. Research-wise, a group from the Department of Physics is intensively involved with the SKA Project (Square Kilometre Array), with 3 000 dishes reaching from Carnavon in the Karoo to Mauritius in the Indian Ocean. According to Prof Meintjes, many detailed studies can be conducted with the SKA system of sources, showing major eruptions and mass effluent from the systems. Athanasius Ramaila, a BSc Honours student in Astrophysics at the UFS, has also received a two-year SKA internship, where he will be engaged in the SKA software engineering programme to help with developing software for the telescope.

The UFS Astrophysics Group is focusing on the multi-wavelength study of high-energy astrophysics sources. “This multi-wavelength approach to astrophysics is in line with the recent announcement by government that multi wavelength astrophysics will be the main focus for astrophysics research in South Africa. It is also a very important focus for research in the international arena, as can be seen from the large number of international conferences having a multi-wavelength character,” Prof Meintjes said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept