Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2018 Photo Varsity Sports
Netball final at home lie in wait for Kovsies
Newly capped Protea Khanyisa Chawane will return for the Kovsies on Monday when they face the Maties in the semi-final of Varsity Netball in the Callie Human centre.


A first ever Varsity Netball final in the Callie Human centre lie in what should the Kovsies cross the line this Monday in the semi-final against the Maties in Bloemfontein at 19:00. 
Having ended first on the log, the Kovsies will enjoy home court advantage should they progress to the final on 8 October.

The Kovsies won their group fixture against the Maties last month in Stellenbosch by 59-56. It will be the first time the two teams clash in a knock-out match in the competition and also a first visit to the Callie Human centre for the Maties since 2013.

The Kovsies won six out of their seven group matches with their only loss against the Madibaz by a single goal.

They will be strengthened by the return of Khanyisa Chawane (centre) who missed a couple of matches whilst being in Australasia where she made her Protea debut. Meagan Roux, who can either play wing attack or goal attack, is also back. She travelled with the Proteas as a replacement.

They will however be without Tanya Mostert who will be on honeymoon. Her wedding is on Saturday. Remarkable it will only be the second time since her debut in the Kovsies’ very first match in the inaugural competition in 2013 that Mostert will miss a Varsity Netball match.

“The players really yearn to lift that trophy. It’s been some time since we last played in the final (in 2014). My message to them will be to give it their all on Monday,” Mostert said.
According to her the team is currently one that gels very nicely.

“Everyone fully understands their role in the team. We realized where our strengths lie and play according to it. Adding to that we play for one another.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept