Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2018
The Cardiac Simulation lab in action

There’s an electric atmosphere in the operating theatre of the Faculty of Health Sciences, as Dr Taha Gwila and his team focus with intense concentration on the fleshy exposed heart beating rhythmically in the opened chest of the patient lying in front of them. The enormous demands of open-heart surgery are evident to everyone looking on. But there’s a catch. 

The patient is faceless and rubberised. The red liquid flowing in the pipes that network from the body is not blood. And the pulsating heart was beating in the body of a pig not too long ago. 

Cutting edge technology
 
This Cardiac Simulation laboratory supplied by Medtronic is the newest addition to the School of Biomedical Sciences’ clinical simulation and skills unit. 

“There’s nothing like this in Africa, and only a few in the world,” says a beaming Prof Francis Smit, Head of Cardiothoracic Surgery at the Faculty of Health Sciences.
He explains that this new cutting edge medical technology will revolutionise the way cardiac surgeons and other health professionals are trained and assessed.

Practicing specific procedures

The simulation facilities give students with various levels of competency the opportunity to practice specific procedures in their own time and at their own pace.
“Traditionally training followed the apprentice model, where surgeons started with simple tasks and worked their way up. They assisted senior personnel and their exposure to procedures depended on the conditions presented by the patients before them,” explains Prof Smit.

The simulation technology now enables them to repeatedly practise a certain procedure without any risk to a patient. A sophisticated electronic grading system gives detailed feedback after each session, so they know in which areas to improve.  

Simulated emergencies

The system also allows trainers to create a medical emergency that the trainees then have to deal with.

“Assisting senior surgeons with high levels of competency means that in the past, trainees would often never get the chance to experience these kinds of complications during operating procedures. Now we give them a chance to build that confidence so they’ll be able to handle different situations.”  

Training hub for Africa
 

The UFS cardiothoracic programme is being designed to become a training hub for the whole of Southern Africa, combining distance learning with an on-site high-fidelity simulation and assessment centre.

“This is 100% real!” says an excited Dr Gwila after successfully completing his first simulation session. “As a Senior Registrar at the Cardiothoracic Department I’ve done similar procedures on real patients and there’s really no difference at all. Every registrar should do this before ever touching a real body.”

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept