Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 September 2018 Photo Malia Maranyane
Student Affairs host future UFS leaders during leadership conference
2018/2019 student leaders gather in the EBW Auditorium for the annual Leadership Conference

Newly elected 2018/2019 Kovsie student leaders, comprising the Student Representative Council (SRC), Residence Councils (RC), and Residence Assistants (RA), gathered in the EBW Auditorium for training during the annual Student Leadership Conference. This year’s conference was also privileged to be joined by the South Campus SRC members.

The Director: Student Affairs, Dr WP Wahl, kicked off the programme with a session highlighting the importance of creating value-driven communities. Pulane Malefane, Assistant Director: Residence Life, spoke about student leaders fulfilling their roles and responsibilities as RC and RA representatives.

The Dean of Student Affairs, Pura Mgolombane, delivered a presentation based on The Role of Student Leadership as Aligned to the Student Affairs Strategic Plan, Pedagogies and Policies. Students also enjoyed an inspirational talk about Lessons in Leadership: What Leadership Taught Me presented by UFS Council member, David Abbey. 

 
The conference concluded with a delightful dinner and networking session for Kovsie’s future leaders.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept