Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 April 2019 | Story Ruan Bruwer
Wihan Victor
Wihan Victor, opening batsman of the Kovsie cricket team, was the fourth-highest run scorer at the National Club

The first cricket team of the University of the Free State (UFS) ended the National Club Championship in Pretoria in fifth position, officially making them the country’s fifth-best club-cricket team for the 2018/2019 season. 

They secured two wins – over the Madibaz and Impala – in five matches.

The Kovsies, without two of their stars, Marno van Greunen and Sean Whitehead – due to work and study commitments – ended the tournament on a high on Wednesday 17 April 2019. They thumped Impala, the Gauteng representative, by an emphatic nine wickets on the final day.

The winning margin against the Madibaz was six wickets.

The UFS, who did not qualify for last year’s champs, bowled Impala out for 144 in 33 overs. Wizzard Ncedane led a fine bowling display. The medium-pacer claimed 3 for 49. He was well-supported by Siphamandla Mavanda (2/8), Christo van Staden (2/9), and captain AJ van Wyk (2/33). 

Breezy half-centuries from Wihan Victor (53 off 52 balls, 8 fours) and Stephan van Vollenhoven (54 off 40 balls, 7 fours, 1 six) then powered the Knights representatives to victory with more than 30 overs to spare.

Victor, an opening batsman, ended as the UFS top run scorer. He scored 204 runs in five innings at an average of 51.

Only three other batsmen at the tournament scored more runs.

Wizard was the pick of the bowlers. He claimed eight wickets for 132 runs in four innings at an average of 16,5 and a strike rate of 24,5. His eight scalps were the joint second most at the tournament.



News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept