Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 January 2020 | Story Eugene Seegers | Photo Anja Aucamp
New Way to learn a language
Spearheading the digital expansion of the conversational Sesotho course is IDEAS Lab Director, Johann Möller (middle). With him are from the left: Prof Pule Phindane, CUT; Dr Brenton Fredericks, CUT; Bahedile Letlala, UFS Department of African Languages; and Dr Elias Malete, UFS Department of African Languages.

For many years now, the UFS has been offering a one-year course in conversational Sesotho for staff members; this can then be followed up with the one-year course in advanced conversational Sesotho. The conversational Sesotho for students in the Faculty of Education was introduced in 2018 at the UFS.

The Central University of Technology (CUT) needed a conversational course for its first-year students and approached the Department of African Languages for the development of such a course. Living as we do in a multilingual country; this additional language skill opens doors and often hearts as well.


Using instructional design principles

However, the need was identified by both CUT and UFS to present this crucial information in a way that would be more appealing to digital natives as well as to those less familiar with technology. The Department of African Languages on the UFS Bloemfontein Campus, together with relevant departments from the CUT, approached the IDEAS Lab located on the UFS South Campus, since they already have a reputation for being a specialist on broadcasting and repackaging curricular content for digital presentations. The IDEAS Lab provided technical advice and built the multimedia programme, which will help the user to hear and practice phrases in Sesotho, using instructional design principles. The course will be available to both staff and students belonging to the two universities.

Room for growth

Johann Möller, Director of the IDEAS Lab, says this pilot programme will give both institutions the opportunity to test the use of multimedia for language acquisition. He adds, “Language is extremely complex, and we would like to expand this learning aid in the future.” In fact, the original design has room for growth built into it.

To keep things simple for the user and the building team, it was decided to start out with only four potential everyday scenarios where a staff member would like to speak Sesotho: Firstly, how to greet other persons from different genders; secondly, potential scenarios one might encounter in the university environment itself; thirdly, how to deal with situations at a hospital; and finally, how to use one’s language skills at a filling station.

Pronunciation is key

Each scenario contains three to four conversations that the learner can revise, along with images and audio that illustrate the situation and assist with correct pronunciation. The system does not allow the user to progress unless they have listened to the pronunciations of the sample sentences or phrases.

Further reading material and vocabulary lists are also provided, with the result that people who are using the programme can learn at their own pace. The authoring software Articulate Storyline was used to build the individual scenarios and each conversation or lesson within it. The lessons are also not dependent on an internet connection; they can be downloaded onto a flash memory drive and used offline.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept