Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2019 | Story Dr Cindé Greyling | Photo Anja Aucamp
Patents
Dr Mariana Erasmus, SAENSE Platform Manager, says water remediation is vital for both the ecosystem and industries.

KovsieInnovation at the UFS supports innovative research outputs in various ways – one of which is to protect the intellectual property and to register patents where viable. This is in line with KovsieInnovation’s broader aim to create third-stream income for the university. Patent registration is a complex process and the UFS is proud to have the needed expertise to properly facilitate such an endeavour.

The SAENSE Platform

South Africa is a water-scarce country, with many water hungry industries (such as agriculture and mining). “Industrial processes often contaminate water with heavy metals, harmful chemicals, radioactive waste, and even organic sludge,” Dr Mariana Erasmus, SAENSE Platform Manager, explains.

Hence, water remediation is vital for both the ecosystem and industries. One of the key functions of the SAENSE Platform is to offer water-remedial solutions for the (bio)remediation of nitrates, heavy metals, and salts, among others. The platform’s activities and services are supported by undergraduate and postgraduate students and researchers, using Technology Innovation Agency (TIA) funding. TIA is a national public entity that serves as key institutional intervention to bridge the innovation chasm between research and development.

From waste to water

Through the joint effort of two mining companies and the UFS/TIA SAENSE Research Platform, a new treatment for mine drainage (MD) has been developed. This patented B-DAS (Barium – Dispersed Alkaline Substrate) technology effectively treats the major contaminants found in acid, alkaline, or neutral mining wastewater. The aim of the B-DAS system is to provide a passive water-treatment solution with minimum waste production; it can also be a potential pre-treatment for reverse osmosis (RO) to lower the requirements of the membranes and therefore potentially reduce the RO cost.

The success of the patent is that it turns unusable water into water that is fit for agricultural purposes at a reduced cost and increased efficiency.

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept