Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2019 | Story Dr Cindé Greyling | Photo Anja Aucamp
Patents
Dr Mariana Erasmus, SAENSE Platform Manager, says water remediation is vital for both the ecosystem and industries.

KovsieInnovation at the UFS supports innovative research outputs in various ways – one of which is to protect the intellectual property and to register patents where viable. This is in line with KovsieInnovation’s broader aim to create third-stream income for the university. Patent registration is a complex process and the UFS is proud to have the needed expertise to properly facilitate such an endeavour.

The SAENSE Platform

South Africa is a water-scarce country, with many water hungry industries (such as agriculture and mining). “Industrial processes often contaminate water with heavy metals, harmful chemicals, radioactive waste, and even organic sludge,” Dr Mariana Erasmus, SAENSE Platform Manager, explains.

Hence, water remediation is vital for both the ecosystem and industries. One of the key functions of the SAENSE Platform is to offer water-remedial solutions for the (bio)remediation of nitrates, heavy metals, and salts, among others. The platform’s activities and services are supported by undergraduate and postgraduate students and researchers, using Technology Innovation Agency (TIA) funding. TIA is a national public entity that serves as key institutional intervention to bridge the innovation chasm between research and development.

From waste to water

Through the joint effort of two mining companies and the UFS/TIA SAENSE Research Platform, a new treatment for mine drainage (MD) has been developed. This patented B-DAS (Barium – Dispersed Alkaline Substrate) technology effectively treats the major contaminants found in acid, alkaline, or neutral mining wastewater. The aim of the B-DAS system is to provide a passive water-treatment solution with minimum waste production; it can also be a potential pre-treatment for reverse osmosis (RO) to lower the requirements of the membranes and therefore potentially reduce the RO cost.

The success of the patent is that it turns unusable water into water that is fit for agricultural purposes at a reduced cost and increased efficiency.

News Archive

UFS researchers are producing various flavour and fragrance compounds
2015-05-27

 

The minty-fresh smell after brushing your teeth, the buttery flavour on your popcorn and your vanilla-scented candles - these are mostly flavour and fragrance compounds produced synthetically in a laboratory and the result of many decades of research.

This research, in the end, is what will be important to reproduce these fragrances synthetically for use in the food and cosmetic industries.

Prof Martie Smit, Academic Head of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, and her colleague Dr Dirk Opperman, currently have a team of postgraduate students working on the production of various flavour and fragrance compounds from cheap and abundantly available natural raw materials. 

Prof Smit explains that most of the flavours and fragrances that we smell every day, originally come from natural compounds produced mainly by plants.

“However, because these compounds are often produced in very low concentrations by plants, many of these compounds are today replaced with synthetically-manufactured versions. In recent times, there is an increasing negative view among consumers of such synthetic flavour and fragrance compounds.”

On the other hand, aroma chemicals produced by biotechnological methods, are defined as natural according to European Union and Food and Drug Administration (USA) legal definitions, provided that the raw materials used are of natural origin.  Additionally, the environmental impact and carbon footprint associated with biotech-produced aroma chemicals are often also smaller than those associated with synthetically-produced compounds or those extracted by traditional methods from agricultural sources.

During the last four years, the team investigated processes for rose fragrance, vanilla flavour, mint and spearmint flavours, as well as butter flavour. They are greatly encouraged by the fact that one of these processes is currently being commercialised by a small South African natural aroma chemicals company. Their research is funded by the Department of Science and Technology and the National Research Foundation through the South African Biocatalysis Initiative, the DST-NRF Centre of Excellence in Catalysis and the Technology Innovation Agency, while the UFS has also made a significant investment in this research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept