Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 February 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Prof Angelique van Niekerk and CP Naude
Charl-Pierre Naudé with Prof Angelique van Niekerk after launch and discussion of his book.

Die Ongelooflike Onskuld van Dirkie Verwey is the debut novel by Charl-Pierre Naudé, research fellow in the Department of Afrikaans and Dutch, German and French at the University of the Free State (UFS).

Naudé has published four volumes of poetry and is a poet by profession. Die Ongelooflike Onskuld van Dirkie Verwey is his first leap from poetry to prose. He is also a former winner of the Ingrid Jonker Prize for poetry.

The book, published by Tafelberg, was launched on the UFS Bloemfontein Campus on Thursday 30 January 2019 where Naudé was in conversation with Dr Francois Smit, also from the Department of Afrikaans and Dutch, German and French, during which the two of them attempted to analyse the world of the main characters; however, Naudé did not want to give away too much. ”I think people should read the book,” he said.

Spiritual and physical worlds

 

“The novel is a first-person narrative told by one of the characters. I wanted to play a certain bluff to determine exactly who the author of this book was,” said Naudé. The book is not totally explicable. “I wanted the reader to feel that it is not absolutely true.”

''The book seeks to combine the spiritual and physical worlds,” said Naudé. Die Ongelooflike Onskuld van Dirkie Verwey is essentially a love story in which the two worlds merge, but nonetheless never mix.

 

Creative writing course revived

 

“The book is Charl-Pierre’s creative output which forms part of his creative writing course,” said Head of Department, Prof Angelique van Niekerk. This is the first book published after the revival of the creative writing course at the UFS in 2015 – and what a book to kick off with!

“It is of great importance for our department to have been part of this book,” Dr Smith said.

Read here the article published in Huisgenoot.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept