Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2019 | Story Zama Feni | Photo Charl Devenish
Disease Control and Prevention InStory
From left, seated: Dr Mathew Esona, CDC delegate; Dr Michael Bowen, CDC delegate; Dr Martin Nyaga, lead Researcher at the UFS-NGS Unit; standing: Mojalefa Buti, Office of the Vice-Dean, UFS Faculty of Health Sciences; Dr Glen Tylor, Senior Director, Directorate Research Development; Cornelius Hagenmeier, Director, Office for International Affairs; and Dr Saheed Sabiu, Postdoctoral Research Fellow in the Faculty of Natural and Agricultural Sciences.

In pursuit of efforts to advance research on viruses and disease control, the United States-based Centre for Disease Control and Prevention (CDC) has made a commitment to enhance the University of the Free State (UFS) Next Generation Sequencing (NGS) Unit’s data collection systems and further empower its staff and students.

UFS and US guests explore areas of mutual; cooperation

During a visit to the university in early December last year CDC delegation, Dr Michael Bowen and Dr Mathew Esona, a meeting was held with the lead Researcher at the UFS-NGS Unit, Dr Martin Nyaga; Senior Director of the UFS Directorate Research Development, Dr Glen Tylor; Director of UFS Office for International Affairs, Cornelius Hagenmeier; and Dr Saheed Sabiu Postdoctoral Research Fellow in the Faculty of Natural and Agriculture Sciences. It was in this meeting that areas of mutual collaboration and engagement between the two institutions which include technology transfer, funding and wet and dry laboratory quality control and capacity development were identified.

The UFS-NGS Unit, established in 2016, enjoys longstanding networking and collaborative ventures with renowned researchers in Africa, the USA, and Europe – which in return, have contributed immensely to the research activities of the university as a whole.

Dr Nyaga said in an effort to advance genomics research in the NGS Unit, the visitors have committed themselves to initiate and further enhance capacity development for the unit’s staff and students.

US guests impressed with advanced equipment at UFS

The CDC delegation were intrigued that the UFS also operates a Miseq Illumina platform like the one used at their enteric-viruses laboratory. It could thus be in line to assist in developing exclusive pipelines for the analysis of NGS data generated by the UFS-NGS Unit.

This is a personal sequencing system, which is a powerful state-of-the-art next-generation sequencer. It uses sequencing-by-synthesis technology capable of sequencing up to 15GB of high-quality filtered bases per run, with up to 600 base-pair read lengths. This allows the assembly of small genomes or the detection of target variants with unmatched accuracy, especially within homo-polymer regions.

UFS and CDC engagements still on

Further engagements about the identified areas of collaboration are ongoing between Hagenmeier, Dr Bowen, and Dr Nyaga, who are currently working on appropriate mechanisms to enact the envisaged collaboration between the two institutions.

The NGS Unit received research awards from the World Health Organisation, South African Medical Research Council, Poliomyelitis Research Foundation, and the National Research Foundation for different aspects of genomics research, and more recently from the Bill and Melinda Gates Foundation for the Enteric Viruses Genome Initiative, involving four African countries (South Africa, Ghana, Malawi, and Cameroon).

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept