Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2019 | Story Zama Feni | Photo Charl Devenish
Disease Control and Prevention InStory
From left, seated: Dr Mathew Esona, CDC delegate; Dr Michael Bowen, CDC delegate; Dr Martin Nyaga, lead Researcher at the UFS-NGS Unit; standing: Mojalefa Buti, Office of the Vice-Dean, UFS Faculty of Health Sciences; Dr Glen Tylor, Senior Director, Directorate Research Development; Cornelius Hagenmeier, Director, Office for International Affairs; and Dr Saheed Sabiu, Postdoctoral Research Fellow in the Faculty of Natural and Agricultural Sciences.

In pursuit of efforts to advance research on viruses and disease control, the United States-based Centre for Disease Control and Prevention (CDC) has made a commitment to enhance the University of the Free State (UFS) Next Generation Sequencing (NGS) Unit’s data collection systems and further empower its staff and students.

UFS and US guests explore areas of mutual; cooperation

During a visit to the university in early December last year CDC delegation, Dr Michael Bowen and Dr Mathew Esona, a meeting was held with the lead Researcher at the UFS-NGS Unit, Dr Martin Nyaga; Senior Director of the UFS Directorate Research Development, Dr Glen Tylor; Director of UFS Office for International Affairs, Cornelius Hagenmeier; and Dr Saheed Sabiu Postdoctoral Research Fellow in the Faculty of Natural and Agriculture Sciences. It was in this meeting that areas of mutual collaboration and engagement between the two institutions which include technology transfer, funding and wet and dry laboratory quality control and capacity development were identified.

The UFS-NGS Unit, established in 2016, enjoys longstanding networking and collaborative ventures with renowned researchers in Africa, the USA, and Europe – which in return, have contributed immensely to the research activities of the university as a whole.

Dr Nyaga said in an effort to advance genomics research in the NGS Unit, the visitors have committed themselves to initiate and further enhance capacity development for the unit’s staff and students.

US guests impressed with advanced equipment at UFS

The CDC delegation were intrigued that the UFS also operates a Miseq Illumina platform like the one used at their enteric-viruses laboratory. It could thus be in line to assist in developing exclusive pipelines for the analysis of NGS data generated by the UFS-NGS Unit.

This is a personal sequencing system, which is a powerful state-of-the-art next-generation sequencer. It uses sequencing-by-synthesis technology capable of sequencing up to 15GB of high-quality filtered bases per run, with up to 600 base-pair read lengths. This allows the assembly of small genomes or the detection of target variants with unmatched accuracy, especially within homo-polymer regions.

UFS and CDC engagements still on

Further engagements about the identified areas of collaboration are ongoing between Hagenmeier, Dr Bowen, and Dr Nyaga, who are currently working on appropriate mechanisms to enact the envisaged collaboration between the two institutions.

The NGS Unit received research awards from the World Health Organisation, South African Medical Research Council, Poliomyelitis Research Foundation, and the National Research Foundation for different aspects of genomics research, and more recently from the Bill and Melinda Gates Foundation for the Enteric Viruses Genome Initiative, involving four African countries (South Africa, Ghana, Malawi, and Cameroon).

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept