Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 February 2019 | Story Zama Feni | Photo Charl Devenish
Disease Control and Prevention InStory
From left, seated: Dr Mathew Esona, CDC delegate; Dr Michael Bowen, CDC delegate; Dr Martin Nyaga, lead Researcher at the UFS-NGS Unit; standing: Mojalefa Buti, Office of the Vice-Dean, UFS Faculty of Health Sciences; Dr Glen Tylor, Senior Director, Directorate Research Development; Cornelius Hagenmeier, Director, Office for International Affairs; and Dr Saheed Sabiu, Postdoctoral Research Fellow in the Faculty of Natural and Agricultural Sciences.

In pursuit of efforts to advance research on viruses and disease control, the United States-based Centre for Disease Control and Prevention (CDC) has made a commitment to enhance the University of the Free State (UFS) Next Generation Sequencing (NGS) Unit’s data collection systems and further empower its staff and students.

UFS and US guests explore areas of mutual; cooperation

During a visit to the university in early December last year CDC delegation, Dr Michael Bowen and Dr Mathew Esona, a meeting was held with the lead Researcher at the UFS-NGS Unit, Dr Martin Nyaga; Senior Director of the UFS Directorate Research Development, Dr Glen Tylor; Director of UFS Office for International Affairs, Cornelius Hagenmeier; and Dr Saheed Sabiu Postdoctoral Research Fellow in the Faculty of Natural and Agriculture Sciences. It was in this meeting that areas of mutual collaboration and engagement between the two institutions which include technology transfer, funding and wet and dry laboratory quality control and capacity development were identified.

The UFS-NGS Unit, established in 2016, enjoys longstanding networking and collaborative ventures with renowned researchers in Africa, the USA, and Europe – which in return, have contributed immensely to the research activities of the university as a whole.

Dr Nyaga said in an effort to advance genomics research in the NGS Unit, the visitors have committed themselves to initiate and further enhance capacity development for the unit’s staff and students.

US guests impressed with advanced equipment at UFS

The CDC delegation were intrigued that the UFS also operates a Miseq Illumina platform like the one used at their enteric-viruses laboratory. It could thus be in line to assist in developing exclusive pipelines for the analysis of NGS data generated by the UFS-NGS Unit.

This is a personal sequencing system, which is a powerful state-of-the-art next-generation sequencer. It uses sequencing-by-synthesis technology capable of sequencing up to 15GB of high-quality filtered bases per run, with up to 600 base-pair read lengths. This allows the assembly of small genomes or the detection of target variants with unmatched accuracy, especially within homo-polymer regions.

UFS and CDC engagements still on

Further engagements about the identified areas of collaboration are ongoing between Hagenmeier, Dr Bowen, and Dr Nyaga, who are currently working on appropriate mechanisms to enact the envisaged collaboration between the two institutions.

The NGS Unit received research awards from the World Health Organisation, South African Medical Research Council, Poliomyelitis Research Foundation, and the National Research Foundation for different aspects of genomics research, and more recently from the Bill and Melinda Gates Foundation for the Enteric Viruses Genome Initiative, involving four African countries (South Africa, Ghana, Malawi, and Cameroon).

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept