Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2019 | Story Leonie Bolleurs
Animal Conservation
A giraffe after a successful immobilisation capture being prepared for safe relocation.

From 2007 to 2014, the country experienced an exponential rise in rhino poaching – a growth of over 9,000%. Most illegal activities occur in the Kruger National Park.

 

Contributing to fight this battle is a group of five former students and colleagues from the UFS Department of Chemistry, now in the employment of Wildlife Pharmaceuticals. Situated in the Nelspruit area, Dr Inus Janse van Rensburg, Head of Research and Development; Lizette Janse van Rensburg, Head of Operations; Leo Kirsten, API expert; Dr Rikus Peens, API chemist; and Dr Chris Joubert, Laboratory Specialist, are working at this pharmaceutical manufacturing facility. The company specialises in the development, manufacturing, and end use of wildlife medicines.

 

With the medicines they develop, they are able to immobilise animals. Prof André Roodt, Discipline Head of the UFS Division of Inorganic Chemistry, who attended Indaba 9 with members of his research team in Skukuza, Kruger National Park, said wildlife species are being chemically immobilised for different reasons.

 

Prosecution of poachers

 

One example is of a rhino which was immobilised after a successful dehorning procedure by veterinarians and personnel of Wildlife Pharmaceuticals. As part of a programme to discourage poaching, selective DNA data collection is also conducted by some veterinarian groups for future use in the possible prosecution of individuals who are dealing with rhino horn. As soon as a rhino that was killed during poaching has been discovered, samples of the animal are obtained for a full analysis.

 

These samples are then stored on a database. Wherever rhino horn is confiscated (even internationally), the DNA is analysed, and the database may be consulted to see where the specific rhino was killed. The person in possession of the rhino horn may then be charged with the ‘killing’ of the original rhino.

 

Prof Roodt explained that the foundation of all medicines is based on active pharmaceutical ingredients (APIs) present in the finished pharmaceutical product, be it tablets, capsules, a syrup or a sterile injectable liquid. In accordance with local and international regulations and guidelines, chemists at API facilities are manufacturing these APIs globally.

 

Wildlife conservation

 

The APIs are respectively incorporated into registered finished pharmaceutical products, which are then used by registered veterinarians for chemical immobilisation and reversal of immobilisation in wildlife species.

 

According to Prof Roodt, the importance of developing appropriate chemical agents and the role of chemical manufacturing are crucial for animal conservation, with a scope far beyond the field of animal immobilisation, thus extending it to animal health, treatments, and vaccinations.

 

Besides saving our rhinos, wildlife species require immobilisation for different reasons. This can include, for example, wound treatment, relocation, and surgical procedures. “It is critical that the animals be immobilised to ensure limitation of stress to the animal, mitigate self-harm, allow safe handling of the animal, and for operator safety. These activities will be impossible to execute without chemical immobilisation of the animal,” said Prof Roodt.

 

Dr Janse van Rensburg, who received his PhD in the UFS Department of Chemistry in 2008, said the department, through exposing its students to, among others, complex equipment in labs as well as work in international labs to critically assess and benchmark their work against others, contributed to the success of his career at Wildlife Pharmaceuticals.

News Archive

Training in critical medical skills receives preference at the UFS
2015-07-24

The UFS bought a new simulator for surgeons to learn how to perform laparoscopic operations. During the launch of the simulator, Dr Mathys Labuschagne (left), Head of the Clinical Simulation and Skills Unit, illustrates to Prof Gert van Zyl, Dean of the faculty, how the simulator works.
Photo: Rene-Jean van der Berg

The Clinical Simulation and Skills Unit in the University of the Free State (UFS) Faculty of Health Sciences purchased a new laparoscopic simulator for R1.2 million recently. The simulator will be used to teach postgraduate medical students how to perform laparoscopic surgery. The UFS is currently the only university in the country, and one of only two institutions in South Africa, that own such a simulator.

The Lapsim simulator, from Surgical Science in Sweden, is a highly sophisticated computerised tool for the training and improvement of laparoscopic surgical skills in postgraduate students within the surgical disciplines.

“The purpose of a simulator is not to replace training on patients, but to help registrars in acquiring basic laparoscopic surgical skills,” says Dr Mathys Labuschagne, Head of the Clinical Simulation and Skills Unit.

These skills include depth perception, hand-eye-coordination, instrument handling, precision and speed, which are essential before operations can be performed on patients.

Prof Gert van Zyl, Dean of the Faculty of Health Sciences, says this simulator is very important for the UFS to train registrars more effectively in theatre work.

“Not only registrars will benefit from this, but qualified surgeons may also make use of it to improve their skills.”

The simulator is pre-programmed for different medical conditions that laparoscopic surgery is traditionally used for. Programmes can be selected for procedures such as sterilisation, cholecystectomy (gall bladder removal), endometriosis, etc. The simulator even makes it possible simply to practise eye-hand coordination, and to apply stitches internally.

Watch the short video explaining more about the Lapsim simulator.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept