Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2019 | Story Leonie Bolleurs
Animal Conservation
A giraffe after a successful immobilisation capture being prepared for safe relocation.

From 2007 to 2014, the country experienced an exponential rise in rhino poaching – a growth of over 9,000%. Most illegal activities occur in the Kruger National Park.

 

Contributing to fight this battle is a group of five former students and colleagues from the UFS Department of Chemistry, now in the employment of Wildlife Pharmaceuticals. Situated in the Nelspruit area, Dr Inus Janse van Rensburg, Head of Research and Development; Lizette Janse van Rensburg, Head of Operations; Leo Kirsten, API expert; Dr Rikus Peens, API chemist; and Dr Chris Joubert, Laboratory Specialist, are working at this pharmaceutical manufacturing facility. The company specialises in the development, manufacturing, and end use of wildlife medicines.

 

With the medicines they develop, they are able to immobilise animals. Prof André Roodt, Discipline Head of the UFS Division of Inorganic Chemistry, who attended Indaba 9 with members of his research team in Skukuza, Kruger National Park, said wildlife species are being chemically immobilised for different reasons.

 

Prosecution of poachers

 

One example is of a rhino which was immobilised after a successful dehorning procedure by veterinarians and personnel of Wildlife Pharmaceuticals. As part of a programme to discourage poaching, selective DNA data collection is also conducted by some veterinarian groups for future use in the possible prosecution of individuals who are dealing with rhino horn. As soon as a rhino that was killed during poaching has been discovered, samples of the animal are obtained for a full analysis.

 

These samples are then stored on a database. Wherever rhino horn is confiscated (even internationally), the DNA is analysed, and the database may be consulted to see where the specific rhino was killed. The person in possession of the rhino horn may then be charged with the ‘killing’ of the original rhino.

 

Prof Roodt explained that the foundation of all medicines is based on active pharmaceutical ingredients (APIs) present in the finished pharmaceutical product, be it tablets, capsules, a syrup or a sterile injectable liquid. In accordance with local and international regulations and guidelines, chemists at API facilities are manufacturing these APIs globally.

 

Wildlife conservation

 

The APIs are respectively incorporated into registered finished pharmaceutical products, which are then used by registered veterinarians for chemical immobilisation and reversal of immobilisation in wildlife species.

 

According to Prof Roodt, the importance of developing appropriate chemical agents and the role of chemical manufacturing are crucial for animal conservation, with a scope far beyond the field of animal immobilisation, thus extending it to animal health, treatments, and vaccinations.

 

Besides saving our rhinos, wildlife species require immobilisation for different reasons. This can include, for example, wound treatment, relocation, and surgical procedures. “It is critical that the animals be immobilised to ensure limitation of stress to the animal, mitigate self-harm, allow safe handling of the animal, and for operator safety. These activities will be impossible to execute without chemical immobilisation of the animal,” said Prof Roodt.

 

Dr Janse van Rensburg, who received his PhD in the UFS Department of Chemistry in 2008, said the department, through exposing its students to, among others, complex equipment in labs as well as work in international labs to critically assess and benchmark their work against others, contributed to the success of his career at Wildlife Pharmaceuticals.

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept