Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2019 | Story Xolisa Mnukwa | Photo Anja Aucamp
Prof Francis Petersen speech
“We can create an institution that operates and lives in the times of embracing and celebrating diversity, inclusivity, and academic excellence by ensuring that students own their time at university,” said Prof Francis Petersen.

25 January 2019 marked the official welcoming of the University of the Free State’s (UFS) first-year students, as they moved into their respective residences and were warmly welcomed on the UFS Bloemfontein Campus. This day also marked the start of the registration process for first-year students.

According to first-year Psychology student Keisha Claasen, who moved into her residence earlier on 25 January, her first experience of the UFS was daunting but exciting, as she had never been in a similar environment. According to Given Gwerera, who dropped his son off at the Karee residence earlier the day, “the UFS is an institution with great culture and an overall good academic record.” He further explained that he trusts his son to make full use of the opportunities presented to him, as he has a cool head on his shoulders.

On the evening of 25 January, an eager group of millennials, joined by their parents, took the first sip from their cup of varsity life as they assembled on the Red Square of the Bloemfontein Campus to meet the Rector and Vice-Chancellor, Prof Francis Petersen, members of Rectorate, the deans of all faculties, and the Student Representative Council (SRC) of the UFS.

“2019 will be a year of continued change; the UFS is thrilled about the prospect of bringing about opportunities for adaptation and realignment to the future,” said Prof Francis Petersen.

He further explained that the university prides itself in moulding its students into well-rounded individuals who will develop into globally competitive graduates as required in a diversity of landscapes. Prof Petersen urged first-years to remain open to the technological developments that go with globalisation, because of its permanent effects on society today.

First-years were further advised to take advantage of the rich pool of academic research and knowledge that is characteristic of the university and is piloted by UFS scholars, by engaging with and learning from them.

The inspiring night concluded on a colourful note, as the audience enjoyed an artistic laser show in front of the Main Building. Caption:

“UFS academics conduct research that forces the world to take note,” said Prof Francis Petersen at the official first-year welcoming ceremony on the UFS Bloemfontein Campus.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept