Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 January 2019 | Story Charlene Stanley | Photo Charlene Stanley
Film and Visual Media
Johanet Kriel-De Klerk, Chris Vorster, and Martin Rossouw in the auditorium at the Visual Hub, where a lot of time is spent watching and analysing films.

Three years ago, an oblong yellowish-green building arose between Pellies Park and the Beyers Naudé male residence, housing state-of-the art filming, editing, and viewing facilities, and sporting the promising name ‘Visual Hub’ on its exterior.  With this, an exciting interdisciplinary honours degree in Film and Visual Media was introduced.

While the interior and facilities still provide a brand-new impression, lecturers reflect that they’ve come a long way over this period, finding a delicate balance between practical and academic components. 

Not traditional “film school”

“This is not ‘film school’,” lecturer Chris Vorster explains. “Although we have an intensive practical component that sees our students producing a short film at the end of their training, our emphasis is on equipping students with a thorough academic knowledge of film history and analysis.”

Only 15 students can be accepted each year. Applicants should have a degree in the Humanities, scoring at least a 65% average in their final year.

Over the course of a year, students are given a viewing list of selected movies, illustrating different aspects of visual storytelling, film development and techniques, but which also relate to the societies that produced them in revealing ways.

Broadening students’ viewing experience

“Most people tend to get stuck in their favourite genre when it comes to watching movies. We considerably broaden students’ viewing experience,” says Vorster. “We give them as wide a base as possible. When they walk out of here, they can go on to specialise in anything from directing to writing film reviews.”

He usually advises students to see the year after completing their degree as a ‘practical year’, doing volunteer work in as many fields of film production as possible to see what they enjoy most, and then work hard to become a specialist in that field.

The film industry is a tough world. You really need a great amount of talent and drive to make it.” 

LECTURERS’ FAVOURITE FILM GENRES:

Chris Vorster: DRAMA AND THEATRE ARTS

Science fiction crossed with psychological thrillers, and all that shouts, explodes, devours, hits, and disgusts.

Johanet Kriel-De Klerk: HISTORY OF ART AND IMAGE STUDIES

Indie (independent) films, as they strike a good balance between profound art and everyday entertainment.

Debeer Cloete: DRAMA AND THEATRE ARTS

Science fiction. A great favourite is Steven Spielberg’s A.I. Artificial Intelligence [2001]. Spielberg was asked by Stanley Kubrick’s widow to direct this film after Kubrick’s death in 1999. It stays true to Spielberg’s own aesthetic approach while incorporating Kubrick’s approach to cinematography and fragmented narratives.  

Martin Rossouw: HISTORY OF ART AND IMAGE STUDIES

So-called boring philosophical art films, such as those of Terrence Malick.

News Archive

Water research aids decision making on national level
2015-05-25

Photo: Leonie Bolleurs

With water being a valuable and scarce resource in the central regions of South Africa, it is no wonder that the UFS has large interdisciplinary research projects focusing on the conservation of water, as well as the sustainable use of this essential element.

The hydropedology research of Prof Pieter le Roux from the Department of Soil, Crop and Climate Sciences and his team at the UFS focuses on Blue water. Blue water is of critical importance to global health as it is cleared by the soil and stored underground for slow release in marshes, rivers, and deep groundwater. The release of this water bridges the droughts between showers and rain seasons and can stretch over several months and even years. The principles established by Prof Le Roux, now finds application in ecohydrology, urban hydrology, forestry hydrology, and hydrological modelling.

The Department of Agricultural Economics is busy with three research projects for the Water Research Commission of South Africa, with an estimated total budget of R7 million. Prof Henry Jordaan from this department is conducting research on the water footprint of selected field and forage crops, and the food products derived from these crops. The aim is to assess the impact of producing the food products on the scarce freshwater resource to inform policy makers, water managers and water users towards the sustainable use of freshwater for food production.

With his research, Prof Bennie Grové, also from this department, focuses on economically optimising water and electricity use in irrigated agriculture. The first project aims to optimise the adoption of technology for irrigation practices and irrigation system should water allocations to farmers were to be decreased in a catchment because of insufficient freshwater supplies to meet the increasing demand due to the requirements of population growth, economic development and the environment.

In another project, Prof Grové aims to economically evaluate alternative electricity management strategies such as optimally designed irrigation systems and the adoption of new technology to mitigate the substantial increase in electricity costs that puts the profitability of irrigation farming under severe pressure.

Marinda Avenant and her team in the Centre for Environmental Management (CEM), has been involved in the biomonitoring of the Free State rivers, including the Caledon, Modder Riet and part of the Orange River, since 1999. Researchers from the CEM regularly measures the present state of the water quality, algae, riparian vegetation, macro-invertebrates and fish communities in these rivers in order to detect degradation in ecosystem integrity (health).

The CEM has recently completed a project where an interactive vulnerability map and screening-level monitoring protocol for assessing the potential environmental impact of unconventional gas mining by means of hydraulic fracturing was developed. These tools will aid decision making at national level by providing information on the environment’s vulnerability to unconventional gas mining.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept