Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2019 | Story Leonie Bolleurs | Photo Earl Slipher
Mars
One of the first colour photographs of Mars, taken through the lens of the Lamont-Hussey telescope in 1939. The telescope was restored and is currently on display at the Naval Hill Planetarium.

In 2018 the University of the Free State (UFS) launched the historic 27-inch Lamont-Hussey Refractor telescope exhibit together with the completed observation platform and a garden in front of the Naval Hill Planetarium in Bloemfontein.

The re-installation of the telescope as a static outdoor exhibition at Naval Hill is now complete. The project started several years ago after the recovery of abandoned parts of the old telescope. What followed was a story of trial, patience, careful planning and a lot of hard work.

 

Taking it apart

According to Dawid van Jaarsveld from the UFS Department of Physics, the mounting and tube of the Lamont telescope has returned to its home, the Lamont-Hussey Observatory, for display. The telescope had 47 years of service and years of abandonment in the veld after it was taken apart in 1975.

Its former telescope dome now hosts the Naval Hill Planetarium, the first digital planetarium in Sub-Saharan Africa.

The telescope was taken apart after the observatory was closed in 1974. It was dismantled and the optics were sent back to the University of Michigan with the largest pieces “left for dead in the veld” on the grounds of the Ehrlichpark Fire Station.

According to Dr Hendrik van Heerden from the UFS Department of Physics, who assisted in the technical side of re-installing the telescope, the larger pieces were recovered by Braam van Zyl and subsequently moved into the museum hanger of the Bloemfontein Fire Brigade where they stayed for many years.

 

Contribution to science

The University of Michigan in the US built the Lamont-Hussey Observatory between 1926 and 1928 in Bloemfontein for the study of double stars. The telescope had great historic significance and was used by professional astronomer RA Rossiter from Michigan, who set the record for discovering and measuring more than 5 000 double stars. The planetarium also measured the most double stars in the world, more than 7 000.

Van Jaarsveld describes a double star – also known as a binary star system – as two stars orbiting around one another. Studies of double stars enable researchers to determine the mass of stars.

Earl Slipher used the telescope to take one of the very first colour photographs of Mars in 1939. Slipher took 60 000 photos of Mars in 1939, 1954 and 1956 with the telescope. He was the world expert on the planet at the time. The camera Slipher used is displayed in the Boyden Observatory museum just outside Bloemfontein.

 

Putting it together

Van Heerden continues: “In early 2017 the components [of the telescope] were relocated to Dukoc Manufacturing in Bloemfontein for cleaning, treatment and painting. It took a while, as the missing components had to be manufactured before the final painting could be completed. The missing pieces were made with the help of the original blueprints of the telescope, provided by Prof Patrick Seitzer of the University of Michigan.

“These blueprints, along with measurements taken from the cleaned parts at Dukoc Manufacturing were used by Barend Crous, UFS Head of Instrumentation, to develop and manufacture the missing parts. These include the polar axis (solid steel axle over 3 m long and weighing more than one ton), axis-bearing caps (cast-iron pieces weighing more than 100 kg and 200 kg respectively) and telescope position wheels and gear works. After the required components were manufactured and refurbished, they were relocated to the Naval Hill Planetarium for the launch ceremony which was held on 5 June 2018.

“Planning of the installation of the telescope thereafter started in earnest. The jigsaw had to be put together again. The sheer size of the parts required some heavy equipment during the installation. With hard work, good coordination and a bit of luck, a team consisting of myself as project coordinator and consultant, Barend Crous, site engineer; Innes Basson, supervisor; Denver de Koker, handyman; and Wikus Storm, welder, got the job done,” Dr Van Heerden said.

 

Information sessions

Astronomy enthusiasts, tourists, school groups and other members of the public can now visit the Lamont-Hussey telescope with it finally back home after many years of neglect and abandonment in the veld. It can again hold itself high, looking at the stars.

The official opening of the telescope will take place on 26 April 2019 and Prof Seitzer from the University of Michigan will attend the opening event.

The refurbishment of the old telescope and the establishment of the new garden and observing platform were made possible by a R1 million donation by ArcelorMittal.

News Archive

Mineral named after UFS professor
2017-09-29

Description: Mineral tredoux Tags: International Mineralogical Association, tredouxite, Prof Marian Tredoux, Department of Geology, Barberton 

Tredouxite (white) intergrown with bottinoite (light grey),
a complex hydrous alteration product. The large host
minerals are nickel-rich silicate (grey), maybe willemseite,
and the spinel trevorite (dark grey).


More than five thousand minerals have been certified by the International Mineralogical Association (IMA). One of these minerals, tredouxite, was recently named after an academic at the University of the Free State (UFS). 

Tredouxite was named after Prof Marian Tredoux, an associate professor in the Department of Geology, to acknowledge her close to 30 years’ commitment to figuring out the geological history of the rock in which this mineral occurs. The name was chosen by the team which identified the new mineral, consisting of Dr Federica Zaccarini and Prof. Giorgio Garuti from the University of Leoben, Austria, Prof. Luca Bindi from the University of Florence, Italy, and Prof. Duncan Miller from the UFS. 

They found the mineral in the abovementioned rock from the Barberton region in Mpumalanga, in May 2017.

In the past, a mineral was also named after Marie Curie
With the exception of a few historical (pre-1800) names, a mineral is typically named either after the area where it was first found, or after its chemical composition or physical properties, or after a person. If named after a person, it has to be someone who had nothing to do with finding the mineral.

Prof Tredoux said: “As of 19 September 2017, 5292 minerals had been certified by IMA. Of these, 81 were named after women, either singly or with a near relation. Marie Curie is named twice: sklodowskite (herself) and curite (plus husband). Most of the named women are Russian geoscientists.”

Another way to assess the rarity of such a naming is to consider that fewer than 700 minerals have been named after people. Given that there are by now seven billion people on the planet, it means that a person who is granted a mineral name becomes one in 10 million of the people alive today to be honoured in such a way. To date, over a dozen minerals had been named after South Africans, three of them after women (including tredouxite).

It contains nickel, antimony and oxygen
The chemical composition of tredouxite is NiSb2O6 (nickel antimony oxide). This makes it the nickel equivalent of the magnesium mineral bystromite (MgSb2O6), described in the 1950s from the La Fortuna antimony mine in Mexico.  

“This announcement is of great academic importance: the discovery by the Italian team of a phase with that specific chemical composition will undoubtedly help me and my co-workers to better understand the origin of the rock itself,” she said. She also expressed the hope that it may raise interest in the Department of Geology and the UFS as a whole, by highlighting that world-class research is being done at the department. 

The announcement of this new mineral was published on the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification website, the Mineralogical Magazine and the European Journal of Mineralogy.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept